Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains (but not all PH domains are followed by BTK motifs). The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region.
The Btk-type zinc finger or Btk motif (BM) is a conserved zinc-binding motif containing conserved cysteines and a histidine that is present in certain eukaryotic signalling proteins. The motif is named after Bruton's tyrosine kinase (Btk), an enzyme which is essential for B cell maturation in humans and mice [ (PUBMED:8070576) (PUBMED:15661031) ]. Btk is a member of the Tec family of protein tyrosine kinases (PTK). These kinases contain a conserved Tec homology (TH) domain between the N-terminal pleckstrin homology (PH) domain ( IPR001849 ) and the Src homology 3 (SH3) domain ( IPR001452 ). The N-terminal of the TH domain is highly conserved and known as the Btf motif, while the C-terminal region of the TH domain contains a proline-rich region (PRR). The Btk motif contains a conserved His and three Cys residues that form a zinc finger (although these differ from known zinc finger topologies), while PRRs are commonly involved in protein-protein interactions, including interactions with G proteins [ (PUBMED:9280283) (PUBMED:9796816) ]. The TH domain may be of functional importance in various signalling pathways in different species [ (PUBMED:8070576) ]. A complete TH domain, containing both the Btk and PRR regions, has not been found outside the Tec family; however, the Btk motif on its own does occur in other proteins, usually C-terminal to a PH domain (note that although a Btk motif always occurs C-terminal to a PH domain, not all PH domains are followed by a Btk motif).
The crystal structures of Btk show that the Btk-type zinc finger has a globular core, formed by a long loop which is held together by a zinc ion, and that the Btk motif is packed against the PH domain [ (PUBMED:8070576) ]. The zinc-binding residues are a histidine and three cysteines, which are fully conserved in the Btk motif [ (PUBMED:9218782) ].
Proteins known to contain a Btk-type zinc finger include:
Mammalian Bruton's tyrosine kinase (Btk), a protein tyrosine kinase involved in modulation of diverse cellular processes. Mutations affecting Btk are the cause of X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency in mice.
Mammalian Tec, Bmx, and Itk proteins, which are tyrosine protein kinases of the Tec subfamily.
Drosophila tyrosine-protein kinase Btk29A, which is required for the development of proper ring canals and of male genitalia and required for adult survival.
Mammalian Ras GTPase-activating proteins (RasGAP), which regulate the activation of inactive GDP-bound Ras by converting GDP to GTP.
BTKbase, mutation database for X-linked agammaglobulinemia (XLA).
Nucleic Acids Res. 1998; 26: 242-7
Display abstract
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 463 mutation entries from 406 unrelated families showing 303 unique molecular events. In addition to mutations, the database also lists variants or polymorphisms. Each patient is given a unique patient identity number (PIN). Information is included regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites that code for arginine residues. The putative structural implications of all the missense mutations are given in the database. The improved version of the registry having a number of new features is available at http://www. helsinki.fi/science/signal/btkbase.html
Bruton's tyrosine kinase (Btk), the target of inactivating mutations in X-linked immunodeficiency diseases of mice and humans, is essential for normal B cell responsiveness. Recent studies have outlined a mechanism for the activation of Btk by B cell receptor engagement and have identified proximal and distal targets of Btk action.
Structure of the PH domain and Btk motif from Bruton's tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia.
EMBO J. 1997; 16: 3396-404
Display abstract
Bruton's tyrosine kinase (Btk) is an enzyme which is involved in maturation of B cells. It is a target for mutations causing X-linked agammaglobulinaemia (XLA) in man. We have determined the structure of the N-terminal part of Btk by X-ray crystallography at 1.6 A resolution. This part of the kinase contains a pleckstrin homology (PH) domain and a Btk motif. The structure of the PH domain is similar to those published previously: a seven-stranded bent beta-sheet with a C-terminal alpha-helix. Individual point mutations within the Btk PH domain which cause XLA can be classified as either structural or functional in the light of the three-dimensional structure and biochemical data. All functional mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. It is likely that these mutations inactivate the Btk pathway in cell signalling by reducing its affinity for inositol phosphates, which causes a failure in translocation of the kinase to the cell membrane. A small number of signalling proteins contain a Btk motif that always follows a PH domain in the sequence. This small module has a novel fold which is held together by a zinc ion bound by three conserved cysteines and a histidine. The Btk motif packs against the second half of the beta-sheet of the PH domain, forming a close contact with it. Our structure opens up new ways to study the role of the PH domain and Btk motif in the cellular function of Btk and the molecular basis of its dysfunction in XLA patients.
Missense mutations affecting a conserved cysteine pair in the TH domain of Btk.
FEBS Lett. 1997; 413: 205-10
Display abstract
Tec family protein tyrosine kinases have in their N-terminus two domains. The PH domain is followed by Tec homology (TH) domain, which consists of two motifs. The first pattern, Btk motif, is also present in some Ras GAP molecules. C-terminal half of the TH domain, a proline-rich region, has been shown to bind to SH3 domains. Mutations in Bruton's tyrosine kinase (Btk) belonging to the Tec family cause X-linked agammaglobulinemia (XLA) due to developmental arrest of B cells. Here we present the first missense mutations in the TH domain. The substitutions affect a conserved pair of cysteines, residues 154 and 155, involved in Zn2+ binding and thereby the mutations alter protein folding and stability.
The pleckstrin homology (PH) domain is extended in the Btk kinase family by a region designated the TH (Tec homology) domain, which consists of about 80 residues preceding the SH3 domain. The TH domain contains a conserved 27 amino acid stretch designated the Btk motif and a proline-rich region. Sequence similarity was found to a putative Ras GTPase activating protein and a human interferon-gamma binding protein both in the PH domain and the Btk motif region. SLK1/SSP31 protein kinase and a non-catalytic p85 subunit of PI-3 kinase had similarity only with the proline rich region. The identification of a PH domain extension in some signal transduction proteins in different species suggests that this region is involved in protein-protein interactions.
Disease (disease genes where sequence variants are found in this domain)
SwissProt sequences and OMIM curated human diseases associated with missense mutations within the BTK domain.
This information is based on mapping of SMART genomic protein database to KEGG orthologous groups. Percentage points are related to the number of proteins with BTK domain which could be assigned to a KEGG orthologous group, and not all proteins containing BTK domain. Please note that proteins can be included in multiple pathways, ie. the numbers above will not always add up to 100%.