The domain within your query sequence starts at position 267 and ends at position 333; the E-value for the Connexin50 domain shown below is 7.3e-35.

IQKAKGYQLLEEEKIVSHYFPLTEVGMVETSPLSAKPFSQFEEKIGTGPLADMSRSYQET
LPSYAQV

Connexin50

Connexin50
PFAM accession number:PF03509
Interpro abstract (IPR002266):

The connexins are a family of integral membrane proteins that oligomerise to form intercellular channels that are clustered at gap junctions. These channels are specialised sites of cell-cell contact that allow the passage of ions, intracellular metabolites and messenger molecules (with molecular weight less than 1-2kDa) from the cytoplasm of one cell to its opposing neighbours. They are found in almost all vertebrate cell types, and somewhat similar proteins have been cloned from plant species. Invertebrates utilise a different family of molecules, innexins, that share a similar predicted secondary structure to the vertebrate connexins, but have no sequence identity to them [ (PUBMED:9769729) ].

Vertebrate gap junction channels are thought to participate in diverse biological functions. For instance, in the heart they permit the rapid cell-cell transfer of action potentials, ensuring coordinated contraction of the cardiomyocytes. They are also responsible for neurotransmission at specialised 'electrical' synapses. In non-excitable tissues, such as the liver, they may allow metabolic cooperation between cells. In the brain, glial cells are extensively-coupled by gap junctions; this allows waves of intracellular Ca 2+ to propagate through nervous tissue, and may contribute to their ability to spatially-buffer local changes in extracellular K + concentration [ (PUBMED:7685944) ].

The connexin protein family is encoded by at least 13 genes in rodents, with many homologues cloned from other species. They show overlapping tissue expression patterns, most tissues expressing more than one connexin type. Their conductances, permeability to different molecules, phosphorylation and voltage-dependence of their gating, have been found to vary. Possible communication diversity is increased further by the fact that gap junctions may be formed by the association of different connexin isoforms from apposing cells. However, in vitro studies have shown that not all possible combinations of connexins produce active channels [ (PUBMED:8811187) (PUBMED:8608591) ].

Hydropathy analysis predicts that all cloned connexins share a common transmembrane (TM) topology. Each connexin is thought to contain 4 TM domains, with two extracellular and three cytoplasmic regions. This model has been validated for several of the family members by in vitro biochemical analysis. Both N- and C-termini are thought to face the cytoplasm, and the third TM domain has an amphipathic character, suggesting that it contributes to the lining of the formed-channel. Amino acid sequence identity between the isoforms is ~50-80%, with the TM domains being well conserved. Both extracellular loops contain characteristically conserved cysteine residues, which likely form intramolecular disulphide bonds. By contrast, the single putative intracellular loop (between TM domains 2 and 3) and the cytoplasmic C terminus are highly variable among the family members. Six connexins are thought to associate to form a hemi-channel, or connexon. Two connexons then interact (likely via the extracellular loops of their connexins) to form the complete gap junction channel.

 
NH2-*** *** *************-COOH
** ** ** **
** ** ** ** Cytoplasmic
---**----**-----**----**----------------
** ** ** ** Membrane
** ** ** **
---**----**-----**----**----------------
** ** ** ** Extracellular
** ** ** **
** **

Two sets of nomenclature have been used to identify the connexins. The first, and most commonly used, classifies the connexin molecules according to molecular weight, such as connexin43 (abbreviated to Cx43), indicating a connexin of molecular weight close to 43kDa. However, studies have revealed cases where clear functional homologues exist across species that have quite different molecular masses; therefore, an alternative nomenclature was proposed based on evolutionary considerations, which divides the family into two major subclasses, alpha and beta, each with a number of members [ (PUBMED:1320430) ]. Due to their ubiquity and overlapping tissue distributions, it has proved difficult to elucidate the functions of individual connexin isoforms. To circumvent this problem, particular connexin-encoding genes have been subjected to targeted-disruption in mice, and the phenotype of the resulting animals investigated. Around half the connexin isoforms have been investigated in this manner [ (PUBMED:9861669) ]. Further insight into the functional roles of connexins has come from the discovery that a number of human diseases are caused by mutations in connexin genes. For instance, mutations in Cx32 give rise to a form of inherited peripheral neuropathy called X-linked dominant Charcot-Marie-Tooth disease [ (PUBMED:7570999) ]. Similarly, mutations in Cx26 are responsible for both autosomal recessive and dominant forms of nonsyndromic deafness, a disorder characterised by hearing loss, with no apparent effects on other organ systems.

Gap junction alpha-8 protein (also called connexin50, Cx50, or lens fibre protein MP70) is a connexin of ~431 amino acid residues. The chicken isoform is shorter (399 residues) and is hence known as Cx45.6. Cx50 and Cx46 are the two gap junction proteins normally found in lens fibre cells of the eye. Evidence from both genetically-engineered mice, and from the identification of mutations in the human Cx50-encoding gene, highlight the importance of this connexin in maintaining lens transparency. Deletion of mice Cx50 produces a viable phenotype, but these animals start to develop cataracts (of the zonular pulverant type) at about one week old. They also have abnormally small eyes and lenses. Similarly, mutations in the human gene encoding Cx50 have been associated with the occurrence of congenital cataracts. Affected individuals develop cataracts (with zonular pulverent opacities), and analysis shows they have a single point mutation in the Cx50 coding region, resulting in a non-conservative substitution in the second putative TM domain of a serine residue for a proline.

GO process:cell communication (GO:0007154)
GO component:connexin complex (GO:0005922)

This is a PFAM domain. For full annotation and more information, please see the PFAM entry Connexin50