This family includes eukaryotic translation initiation factor 6 (eIF6) as well as presumed archaeal homologues.
The assembly of 80S ribosomes requires joining of the 40S and 60S subunits, which is triggered by the formation of an initiation complex on the 40S subunit. This event is rate-limiting for translation, and depends on external stimuli and the status of the cell. Eukaryotic translation initiation factor 6 (eIF6) binds specifically to the free 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit ribosomes [ (PUBMED:9891075) ]. Furthermore, eIF6 interacts in the cytoplasm with RACK1, a receptor for activated protein kinase C (PKC). RACK1 is a major component of translating ribosomes, which harbour significant amounts of PKC. Loading 60S subunits with eIF6 caused a dose-dependent translational block and impairment of 80S formation, which are reversed by expression of RACK1 and stimulation of PKC in vivo and in vitro. PKC stimulation leads to eIF6 phosphorylation and its release, promoting 80S subunit formation. RACK1 provides a physical and functional link between PKC signalling and ribosome activation [ (PUBMED:11238882) (PUBMED:10206977) (PUBMED:9405604) ].
All members of this family have a conserved pentameric fold referred to as a beta/alpha propeller. The eukaryotic IF6 members have a moderately conserved C-terminal extension which is not required for ribosomal binding, and may have an alternative function [ (PUBMED:11524672) ].
The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor.
Mol Cell Biol. 1999; 19: 1416-26
Display abstract
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.