Secondary literature sources for E2_bind
The following references were automatically generated.
- Kuwabara N et al.
- Structure of a BAG6 (Bcl-2-associated athanogene 6)-Ubl4a (ubiquitin-like protein 4a) complex reveals a novel binding interface that functions in tail-anchored protein biogenesis.
- J Biol Chem. 2015; 290: 9387-98
- Display abstract
BAG6 is an essential protein that functions in two distinct biological pathways, ubiquitin-mediated protein degradation of defective polypeptides and tail-anchored (TA) transmembrane protein biogenesis in mammals, although its structural and functional properties remain unknown. We solved a crystal structure of the C-terminal heterodimerization domains of BAG6 and Ubl4a and characterized their interaction biochemically. Unexpectedly, the specificity and structure of the C terminus of BAG6, which was previously classified as a BAG domain, were completely distinct from those of the canonical BAG domain. Furthermore, the tight association of BAG6 and Ubl4a resulted in modulation of Ubl4a protein stability in cells. Therefore, we propose to designate the Ubl4a-binding region of BAG6 as the novel BAG-similar (BAGS) domain. The structure of Ubl4a, which interacts with BAG6, is similar to the yeast homologue Get5, which forms a homodimer. These observations indicate that the BAGS domain of BAG6 promotes the TA protein biogenesis pathway in mammals by the interaction with Ubl4a.
- VanderLinden RT et al.
- Structural basis for the activation and inhibition of the UCH37 deubiquitylase.
- Mol Cell. 2015; 57: 901-11
- Display abstract
The UCH37 deubiquitylase functions in two large and very different complexes, the 26S proteasome and the INO80 chromatin remodeler. We have performed biochemical characterization and determined crystal structures of UCH37 in complexes with RPN13 and NFRKB, which mediate its recruitment to the proteasome and INO80, respectively. RPN13 and NFRKB make similar contacts to the UCH37 C-terminal domain but quite different contacts to the catalytic UCH domain. RPN13 can activate UCH37 by disrupting dimerization, although physiologically relevant activation likely results from stabilization of a surface competent for ubiquitin binding and modulation of the active-site crossover loop. In contrast, NFRKB inhibits UCH37 by blocking the ubiquitin-binding site and by disrupting the enzyme active site. These findings reveal remarkable commonality in mechanisms of recruitment, yet very different mechanisms of regulating enzyme activity, and provide a foundation for understanding the roles of UCH37 in the unrelated proteasome and INO80 complexes.
- Ohashi K, Otomo T
- Identification and characterization of the linear region of ATG3 that interacts with ATG7 in higher eukaryotes.
- Biochem Biophys Res Commun. 2015; 463: 447-52
- Display abstract
Transfer of GABARAP thioester from the E1 ATG7 to the E2 ATG3 requires the interaction between the N-terminal domain of ATG7 and the flexible region (FR) of ATG3. This interaction has been visualized in the yeast Atg7-Atg3 complex crystal structure, but remains to be defined in higher eukaryotes. Here, our NMR data precisely define the region of the FR of human ATG3 that interacts with ATG7 (RIA7) and demonstrate RIA7 partially overlaps with the E3-interacting region, explaining how the E1-E2 and E2-E3 interactions are mutually exclusive. Mutational analyses identify critical residues of the RIA7 for the E1 interaction and GABARAP transfer, advancing our understanding of a molecular mechanism of the autophagic conjugation cascade in higher eukaryotes.
- Xie C, Powell C, Yao M, Wu J, Dong Q
- Ubiquitin-conjugating enzyme E2C: a potential cancer biomarker.
- Int J Biochem Cell Biol. 2014; 47: 113-7
- Display abstract
The ubiquitin-conjugating enzymes 2C (UBE2C) is an integral component of the ubiquitin proteasome system. UBE2C consists of a conserved core domain containing the catalytic Cys residue and an N-terminal extension. The core domain is required for ubiquitin adduct formation by interacting with the ubiquitin-fold domain in the E1 enzyme, and contributes to the E3 enzyme binding. UBE2C N-terminal extension regulates E3 enzyme activity as a part of an intrinsic inhibitory mechanism. UBE2C is required for the destruction of mitotic cyclins and securin, which are essential for spindle assembly checkpoint and mitotic exit. The UBE2C mRNA and/or protein levels are aberrantly increased in many cancer types with poor clinical outcomes. Accumulation of UBE2C stimulates cell proliferation and anchorage-independent growth. UBE2C transgenic mice are prone to develop spontaneous tumors and carcinogen-induced tumor with evidence of chromosome aneuploidy.
- Metzger MB, Pruneda JN, Klevit RE, Weissman AM
- RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination.
- Biochim Biophys Acta. 2014; 1843: 47-60
- Display abstract
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
- Liu W et al.
- Dimeric Ube2g2 simultaneously engages donor and acceptor ubiquitins to form Lys48-linked ubiquitin chains.
- EMBO J. 2014; 33: 46-61
- Display abstract
Cellular adaptation to proteotoxic stress at the endoplasmic reticulum (ER) depends on Lys48-linked polyubiquitination by ER-associated ubiquitin ligases (E3s) and subsequent elimination of ubiquitinated retrotranslocation products by the proteasome. The ER-associated E3 gp78 ubiquitinates misfolded proteins by transferring preformed Lys48-linked ubiquitin chains from the cognate E2 Ube2g2 to substrates. Here we demonstrate that Ube2g2 synthesizes linkage specific ubiquitin chains by forming an unprecedented homodimer: The dimerization of Ube2g2, mediated primarily by electrostatic interactions between two Ube2g2s, is also facilitated by the charged ubiquitin molecules. Mutagenesis studies show that Ube2g2 dimerization is required for ER-associated degradation (ERAD). In addition to E2 dimerization, we show that a highly conserved arginine residue in the donor Ube2g2 senses the presence of an aspartate in the acceptor ubiquitin to position only Lys48 of ubiquitin in proximity to the donor E2 active site. These results reveal an unanticipated mode of E2 self-association that allows the E2 to effectively engage two ubiquitins to specifically synthesize Lys48-linked ubiquitin chains.
- Wiener R et al.
- E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1.
- Nat Struct Mol Biol. 2013; 20: 1033-9
- Display abstract
OTUB1 is a Lys48-specific deubiquitinating enzyme that forms a complex in vivo with E2 ubiquitin (Ub)-conjugating enzymes including UBC13 and UBCH5. OTUB1 binds E2~Ub thioester intermediates and prevents ubiquitin transfer, thereby noncatalytically inhibiting accumulation of polyubiquitin. We report here that a second role of OTUB1-E2 interactions is to stimulate OTUB1 cleavage of Lys48 polyubiquitin. This stimulation is regulated by the ratio of charged to uncharged E2 and by the concentration of Lys48-linked polyubiquitin and free ubiquitin. Structural and biochemical studies of human and worm OTUB1 and UBCH5B show that the E2 enzyme stimulates binding of the Lys48 polyubiquitin substrate by stabilizing folding of the OTUB1 N-terminal ubiquitin-binding helix. Our results suggest that OTUB1-E2 complexes in the cell are poised to regulate polyubiquitin chain elongation or degradation in response to changing levels of E2 charging and available free ubiquitin.
- Qiu Y, Hofmann K, Coats JE, Schulman BA, Kaiser SE
- Binding to E1 and E3 is mutually exclusive for the human autophagy E2 Atg3.
- Protein Sci. 2013; 22: 1691-7
- Display abstract
Ubiquitin-like proteins (UBLs) are activated, transferred and conjugated by E1-E2-E3 enzyme cascades. E2 enzymes for canonical UBLs such as ubiquitin, SUMO, and NEDD8 typically use common surfaces to bind to E1 and E3 enzymes. Thus, canonical E2s are required to disengage from E1 prior to E3-mediated UBL ligation. However, E1, E2, and E3 enzymes in the autophagy pathway are structurally and functionally distinct from canonical enzymes, and it has not been possible to predict whether autophagy UBL cascades are organized according to the same principles. Here, we address this question for the pathway mediating lipidation of the human autophagy UBL, LC3. We utilized bioinformatic and experimental approaches to identify a distinctive region in the autophagy E2, Atg3, that binds to the autophagy E3, Atg12 approximately Atg5-Atg16. Short peptides corresponding to this Atg3 sequence inhibit LC3 lipidation in vitro. Notably, the E3-binding site on Atg3 overlaps with the binding site for the E1, Atg7. Accordingly, the E3 competes with Atg7 for binding to Atg3, implying that Atg3 likely cycles back and forth between binding to Atg7 for loading with the UBL LC3 and binding to E3 to promote LC3 lipidation. The results show that common organizational principles underlie canonical and noncanonical UBL transfer cascades, but are established through distinct structural features.
- Simon AC et al.
- Structure of the Sgt2/Get5 complex provides insights into GET-mediated targeting of tail-anchored membrane proteins.
- Proc Natl Acad Sci U S A. 2013; 110: 1327-32
- Display abstract
Small, glutamine-rich, tetratricopeptide repeat protein 2 (Sgt2) is the first known port of call for many newly synthesized tail-anchored (TA) proteins released from the ribosome and destined for the GET (Guided Entry of TA proteins) pathway. This leads them to the residential membrane of the endoplasmic reticulum via an alternative to the cotranslational, signal recognition particle-dependent mechanism that their topology denies them. In yeast, the first stage of the GET pathway involves Sgt2 passing TA proteins on to the Get4/Get5 complex through a direct interaction between the N-terminal (NT) domain of Sgt2 and the ubiquitin-like (UBL) domain of Get5. Here we characterize this interaction at a molecular level by solving both a solution structure of Sgt2_NT, which adopts a unique helical fold, and a crystal structure of the Get5_UBL. Furthermore, using reciprocal chemical shift perturbation data and experimental restraints, we solve a structure of the Sgt2_NT/Get5_UBL complex, validate it via site-directed mutagenesis, and empirically determine its stoichiometry using relaxation experiments and isothermal titration calorimetry. Taken together, these data provide detailed structural information about the interaction between two key players in the coordinated delivery of TA protein substrates into the GET pathway.
- Papaleo E, Lindorff-Larsen K, De Gioia L
- Paths of long-range communication in the E2 enzymes of family 3: a molecular dynamics investigation.
- Phys Chem Chem Phys. 2012; 14: 12515-25
- Display abstract
Molecular dynamics (MD) simulations have the ability to help reveal the relationship between protein structure, dynamics and function. Here, we describe MD simulations of the representative members of family 3 of E2 enzymes that we performed and analyzed with the aim of providing a quantitative description of the functional dynamics in this biologically important set of proteins. In particular, we combined a description of the protein as a network of interacting residues with the dynamical cross-correlation method to characterize the correlated motions observed in the simulations. This approach enabled us to detect communication between distal residues in these enzymes, and thus to reliably define all the likely intramolecular pathways of communication. We observed functionally relevant differences between the closed and open conformations of the enzyme, and identified the critical residues involved in the long-range communication paths. Our results highlight how molecular simulations can be used to aid in providing atomic-level details to communication paths within proteins.
- Arrigoni A, Grillo B, Vitriolo A, De Gioia L, Papaleo E
- C-Terminal acidic domain of ubiquitin-conjugating enzymes: a multi-functional conserved intrinsically disordered domain in family 3 of E2 enzymes.
- J Struct Biol. 2012; 178: 245-59
- Display abstract
E2 ubiquitin-conjugating enzymes are key elements of the ubiquitin (Ub) pathway, since they influence processivity and topology of the Ub chain assembly and, as a consequence, the fate of the target substrates. E2s are multi-domain proteins, with accessory N-terminal or C-terminal domains that can contribute to the specificity for the cognate Ub-like molecules, or even the E3. In this context, the thorough structural characterization of E2 accessory domains is mandatory, in particular when they are associated to specific functions. We here provide, by computational and comparative studies, the first evidence of an acidic domain (AD) conserved in the E2 sub-family 3R. It is an intrinsically disordered domain, in which elements for Ub or E3 recognition are maintained. This conserved acidic domain (AD) shows propensity for alpha-helix structures (185-192 and 204-218) in the proximity of the sites for interaction with the Ub or the cognate E3. Moreover, our results also suggest that AD can explore conformations with tertiary contacts mainly driven by aromatic and hydrophobic interactions, in absence of its interaction partners. The globular states are likely to be regulated by multiple phosphorylation events, which can trigger conformational changes toward more extended conformations, as judged by MD simulations of the phospho-variants. The extended conformations, in turn, promote the accessibility of the interaction sites for Ub and the E3. We also trace a parallel between this new and natively unfolded structural motif for Ub-recognition and the natively folded ubiquitin associated domain (UBA) typical of family 1 of E2 enzymes, which includes Ubc1. In fact, according to our calculations, Ubc1 maps at the interface between the space of the natively unfolded and folded proteins, as well as it shares common features with the acidic domain of family 3 members.
- Wenzel DM, Stoll KE, Klevit RE
- E2s: structurally economical and functionally replete.
- Biochem J. 2011; 433: 31-42
- Display abstract
Ubiquitination is a post-translational modification pathway involved in myriad cellular regulation and disease pathways. The Ub (ubiquitin) transfer cascade requires three enzyme activities: a Ub-activating (E1) enzyme, a Ub-conjugating (E2) enzyme, and a Ub ligase (E3). Because the E2 is responsible both for E3 selection and substrate modification, E2s function at the heart of the Ub transfer pathway and are responsible for much of the diversity of Ub cellular signalling. There are currently over 90 three-dimensional structures for E2s, both alone and in complex with protein binding partners, providing a wealth of information regarding how E2s are recognized by a wide variety of proteins. In the present review, we describe the prototypical E2-E3 interface and discuss limitations of current methods to identify cognate E2-E3 partners. We present non-canonical E2-protein interactions and highlight the economy of E2s in their ability to facilitate many protein-protein interactions at nearly every surface on their relatively small and compact catalytic domain. Lastly, we compare the structures of conjugated E2~Ub species, their unique protein interactions and the mechanistic insights provided by species that are poised to transfer Ub.
- Spandl J, Lohmann D, Kuerschner L, Moessinger C, Thiele C
- Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region.
- J Biol Chem. 2011; 286: 5599-606
- Display abstract
Lipid droplets (LDs), the major intracellular storage sites for neutral lipids, consist of a neutral lipid core surrounded by a phospholipid monolayer membrane. In addition to their function in lipid storage, LDs participate in lipid biosynthesis and recently were implicated in proteasomal protein degradation and autophagy. To identify components of the protein degradation machinery on LDs, we studied several candidates identified in previous LD proteome analyses. Here, we demonstrate that the highly conserved and broadly expressed ancient ubiquitous protein 1 (AUP1) localizes to LDs, where it integrates into the LD surface in a monotopic fashion with both termini facing the cytosol. AUP1 contains a C-terminal domain with strong homology to a domain known as G2BR, which binds E2 ubiquitin conjugases. We show that AUP1, by means of its G2BR domain, binds to Ube2g2. This binding is abolished by deletion or mutation of the G2BR domain, although the LD localization of AUP1 is not affected. The presence of the AUP1-Ube2g2 complex at LDs provides a direct molecular link between LDs and the cellular ubiquitination machinery.
- Wilson RC, Edmondson SP, Flatt JW, Helms K, Twigg PD
- The E2-25K ubiquitin-associated (UBA) domain aids in polyubiquitin chain synthesis and linkage specificity.
- Biochem Biophys Res Commun. 2011; 405: 662-6
- Display abstract
E2-25K is an ubiquitin-conjugating enzyme with the ability to synthesize Lys48-linked polyubiquitin chains. E2-25K and its homologs represent the only known E2 enzymes which contain a C-terminal ubiquitin-associated (UBA) domain as well as the conserved catalytic ubiquitin-conjugating (UBC) domain. As an additional non-covalent binding surface for ubiquitin, the UBA domain must provide some functional specialization. We mapped the protein-protein interface involved in the E2-25K UBA/ubiquitin complex by solution nuclear magnetic resonance (NMR) spectroscopy and subsequently modeled the structure of the complex. Domain-domain interactions between the E2-25K catalytic UBC domain and the UBA domain do not induce significant structural changes in the UBA domain or alter the affinity of the UBA domain for ubiquitin. We determined that one of the roles of the C-terminal UBA domain, in the context of E2-25K, is to increase processivity in Lys48-linked polyubiquitin chain synthesis, possibly through increased binding to the ubiquitinated substrate. Additionally, we see evidence that the UBA domain directs specificity in polyubiquitin chain linkage.
- Suzuki R, Tsuchiya W, Shindo H, Yamazaki T
- NMR assignments of ubiquitin fold domain (UFD) in SUMO-activating enzyme subunit 2 from rice.
- Biomol NMR Assign. 2011; 5: 245-8
- Display abstract
The small ubiquitin-related modifier (SUMO) is a ubiquitin-like post-translational modifier that alters the localization, activity, or stability of many proteins. In the sumoylation process, an activated SUMO is transferred from SUMO-activating enzyme E1 complex (SAE1/SAE2) to SUMO-conjugating enzyme E2 (Ubc9). Among the multiple domains in E1, a C-terminal ubiquitin fold domain (UFD) of SAE2 shows high affinity for Ubc9, implying that UFD will be functionally important. We report NMR chemical shift assignments of UFD in SAE2 from rice. Almost all the resonances of UFD were assigned uniquely, representing a single conformation of UFD in solution. This is a contrast to the previous report for the corresponding UFD of human SAE2 which shows two conformational states. The secondary structure prediction of UFD in rice SAE2 shows the similar overall structure to the crystal structures of UFD in other E1 proteins such as SAE2 of human and yeast, ubiquitin-activating enzyme of yeast, and NEDD8-activating enzyme E1 catalytic subunit of human. Concomitantly, differences in the length of helices, strands, and loops are observed, particularly in the binding region to E2, supposing the variation in the UFD-E2 binding mode which may play a critical role in determining E1-E2 specificity.
- Ying M et al.
- Comprehensively surveying structure and function of RING domains from Drosophila melanogaster.
- PLoS One. 2011; 6: 23863-23863
- Display abstract
Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold and formation of catalytic core in which related residues and regions exhibit preferential evolutionary conservation.
- Bosanac I et al.
- Modulation of K11-linkage formation by variable loop residues within UbcH5A.
- J Mol Biol. 2011; 408: 420-31
- Display abstract
Ubiquitination refers to the covalent addition of ubiquitin (Ub) to substrate proteins or other Ub molecules via the sequential action of three enzymes (E1, E2, and E3). Recent advances in mass spectrometry proteomics have made it possible to identify and quantify Ub linkages in biochemical and cellular systems. We used these tools to probe the mechanisms controlling linkage specificity for UbcH5A. UbcH5A is a promiscuous E2 enzyme with an innate preference for forming polyubiquitin chains through lysine 11 (K11), lysine 48 (K48), and lysine 63 (K63) of Ub. We present the crystal structure of a noncovalent complex between Ub and UbcH5A. This structure reveals an interaction between the Ub surface flanking K11 and residues adjacent to the E2 catalytic cysteine and suggests a possible role for this surface in formation of K11 linkages. Structure-guided mutagenesis, in vitro ubiquitination and quantitative mass spectrometry have been used to characterize the ability of residues in the vicinity of the E2 active site to direct synthesis of K11- and K63-linked polyubiquitin. Mutation of critical residues in the interface modulated the linkage specificity of UbcH5A, resulting in generation of more K63-linked chains at the expense of K11-linkage synthesis. This study provides direct evidence that the linkage specificity of E2 enzymes may be altered through active-site mutagenesis.
- Rahighi S, Dikic I
- Conformational flexibility and rotation of the RING domain in activation of cullin-RING ligases.
- Nat Struct Mol Biol. 2011; 18: 863-5
- Huang A, Hibbert RG, de Jong RN, Das D, Sixma TK, Boelens R
- Symmetry and asymmetry of the RING-RING dimer of Rad18.
- J Mol Biol. 2011; 410: 424-35
- Display abstract
The human ubiquitin-conjugating enzyme Rad6 (E2), with ubiquitin ligase enzyme Rad18 (RING E3), monoubiquitinates proliferating cell nuclear antigen at stalled replication forks in DNA translesion synthesis. Here, we determine the structure of the homodimeric Rad18 RING domains by X-ray crystallography and classify it to RING-RING dimers that dimerize through helices adjacent to the RING domains and through the canonical RING domains. Using NMR spectroscopy and site-directed mutagenesis, we demonstrate that the Rad6b binding site, for the Rad18 RING domain, strongly resembles that of other E2/E3 RING/U-box complexes. We show that the homodimeric Rad18 RING domain can recruit two Rad6b E2 enzymes, whereas the full-length Rad18 homodimer binds only to a single Rad6b molecule. Such asymmetry is a common feature of RING-RING heterodimers and has been observed for the CHIP U-box homodimer. We propose that asymmetry may be a common feature of dimeric RING E3 ligases.
- Sakata E et al.
- Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates.
- Structure. 2010; 18: 138-47
- Display abstract
E2 ubiquitin-conjugating enzymes catalyze the attachment of ubiquitin to lysine residues of target proteins. The UbcH5b E2 enzyme has been shown to play a key role in the initiation of the ubiquitination of substrate proteins upon action of several E3 ligases. Here we have determined the 2.2 A crystal structure of an intermediate of UbcH5b~ubiquitin (Ub) conjugate, which is assembled into an infinite spiral through the backside interaction. This active complex may provide multiple E2 active sites, enabling efficient ubiquitination of substrates. Indeed, biochemical assays support a model in which the self-assembled UbcH5b~Ub can serve as a bridge for the gap between the lysine residue of the substrate and the catalytic cysteine of E2.
- Ju T, Bocik W, Majumdar A, Tolman JR
- Solution structure and dynamics of human ubiquitin conjugating enzyme Ube2g2.
- Proteins. 2010; 78: 1291-301
- Display abstract
Ube2g2 is an E2 enzyme which functions as part of the endoplasmic reticulum-associated degradation (ERAD) pathway responsible for identification and degradation of misfolded proteins in the endoplasmic reticulum. In tandem with a cognate E3 ligase, Ube2g2 assembles K48-linked polyubiquitin chains and then transfers them to substrate, leading ultimately to proteasomal degradation of the polyubiquitin-tagged substrate. We report here the solution structure and backbone dynamics of Ube2g2 solved by nuclear magnetic resonance spectroscopy. Although the solution structure agrees well with crystallographic structures for the E2 core, catalytically important loops (encompassing residues 95-107 and 130-135) flanking the active site cysteine are poorly defined. (15)N spin relaxation and residual dipolar coupling analysis directly demonstrates that these two loops are highly dynamic in solution. These results suggest that Ube2g2 requires one or more of its protein partners, such as cognate E3, acceptor ubiquitin substrate or thiolester-linked donor ubiquitin, to assume its catalytically relevant conformation. Within the NMR structural ensemble, interactions were observed between His94 and the highly mobile loop residues Asp98 and Asp99, supporting a possible role for His94 as a general base activated by the carboxylate side-chains of Asp98 or Asp99.
- Wang J, Cai S, Chen Y
- Mechanism of E1-E2 interaction for the inhibition of Ubl adenylation.
- J Biol Chem. 2010; 285: 33457-62
- Display abstract
Conjugates of ubiquitin or its homologues to other proteins occur by strictly ordered steps with ordered addition of substrates for each step. High concentrations of E2 were shown to inhibit the formation of E2 approximately Ubl thioester and Ubl approximately target conjugates. We investigated the mechanism of such inhibitory effect of the SUMO E2 and whether the E2 has two binding sites on its E1, one for the inhibitory effect and one for productive SUMOylation. NMR methods in combination with mutagenesis and biochemical assays revealed that Ubc9 binds to two flexible domains of its free E1 simultaneously, suggesting extensive domain movements in the free E1. Further, interaction of free E1 and E2 inhibits SUMO adenylation, and the interfaces responsible for the inhibition were the same as those required for productive transfer of SUMO from E1 to E2. This study indicates a conformational flexibility-dependent mechanism to control the strictly ordered steps in Ubl modifications.
- Purbeck C, Eletr ZM, Kuhlman B
- Kinetics of the transfer of ubiquitin from UbcH7 to E6AP.
- Biochemistry. 2010; 49: 1361-3
- Display abstract
Prior to substrate ubiquitination by HECT-E3 ligases, ubiquitin must first be activated by E1 and then transferred via a series of transthiolation reactions from E1 to E2 and from E2 to E3. We have measured the rate constants and binding affinities underlying the transfer of ubiquitin from E2 UbcH7 to the HECT domain of E3 E6AP. We show that charged UbcH7 and free UbcH7 bind E6AP with similar affinities and that at 37 degrees C the second-order rate constant for the reaction (k(cat)/K(m)) equals approximately 2.3 x 10(5) M(-1) s(-1). The measured parameters place limits on substrate-E6AP binding lifetimes required for processive polyubiquitination.
- Brownell JE et al.
- Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ.
- Mol Cell. 2010; 37: 102-11
- Display abstract
The NEDD8-activating enzyme (NAE) initiates a protein homeostatic pathway essential for cancer cell growth and survival. MLN4924 is a selective inhibitor of NAE currently in clinical trials for the treatment of cancer. Here, we show that MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. Importantly, we have determined that compounds resembling MLN4924 demonstrate the ability to form analogous adducts with other ubiquitin-like proteins (UBLs) catalyzed by their cognate-activating enzymes. These findings reveal insights into the mechanism of E1s and suggest a general strategy for selective inhibition of UBL conjugation pathways.
- Yin Q et al.
- E2 interaction and dimerization in the crystal structure of TRAF6.
- Nat Struct Mol Biol. 2009; 16: 658-66
- Display abstract
Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-6 mediates Lys63-linked polyubiquitination for NF-kappaB activation via its N-terminal RING and zinc finger domains. Here we report the crystal structures of TRAF6 and its complex with the ubiquitin-conjugating enzyme (E2) Ubc13. The RING and zinc fingers of TRAF6 assume a rigid, elongated structure. Interaction of TRAF6 with Ubc13 involves direct contacts of the RING and the preceding residues, and the first zinc finger has a structural role. Unexpectedly, this region of TRAF6 is dimeric both in the crystal and in solution, different from the trimeric C-terminal TRAF domain. Structure-based mutagenesis reveals that TRAF6 dimerization is crucial for polyubiquitin synthesis and autoubiquitination. Fluorescence resonance energy transfer analysis shows that TRAF6 dimerization induces higher-order oligomerization of full-length TRAF6. The mismatch of dimeric and trimeric symmetry may provide a mode of infinite oligomerization that facilitates ligand-dependent signal transduction of many immune receptors.
- Liu G et al.
- NMR and X-RAY structures of human E2-like ubiquitin-fold modifier conjugating enzyme 1 (UFC1) reveal structural and functional conservation in the metazoan UFM1-UBA5-UFC1 ubiquination pathway.
- J Struct Funct Genomics. 2009; 10: 127-36
- Display abstract
For cell regulation, E2-like ubiquitin-fold modifier conjugating enzyme 1 (Ufc1) is involved in the transfer of ubiquitin-fold modifier 1 (Ufm1), a ubiquitin like protein which is activated by E1-like enzyme Uba5, to various target proteins. Thereby, Ufc1 participates in the very recently discovered Ufm1-Uba5-Ufc1 ubiquination pathway which is found in metazoan organisms. The structure of human Ufc1 was solved by using both NMR spectroscopy and X-ray crystallography. The complementary insights obtained with the two techniques provided a unique basis for understanding the function of Ufc1 at atomic resolution. The Ufc1 structure consists of the catalytic core domain conserved in all E2-like enzymes and an additional N-terminal helix. The active site Cys(116), which forms a thio-ester bond with Ufm1, is located in a flexible loop that is highly solvent accessible. Based on the Ufc1 and Ufm1 NMR structures, a model could be derived for the Ufc1-Ufm1 complex in which the C-terminal Gly(83) of Ufm1 may well form the expected thio-ester with Cys(116), suggesting that Ufm1-Ufc1 functions as described for other E1-E2-E3 machineries. alpha-helix 1 of Ufc1 adopts different conformations in the crystal and in solution, suggesting that this helix plays a key role to mediate specificity.
- Das R et al.
- Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78.
- Mol Cell. 2009; 34: 674-85
- Display abstract
The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.
- Chang YG et al.
- Different roles for two ubiquitin-like domains of ISG15 in protein modification.
- J Biol Chem. 2008; 283: 13370-7
- Display abstract
ISG15 (interferon-stimulated gene 15) is a novel ubiquitin-like (UbL) modifier with two UbL domains in its architecture. We investigated different roles for the two UbL domains in protein modification by ISG15 (ISGylation) and the impact of Influenza B virus NS1 protein (NS1B) on regulation of the pathway. The results show that, although the C-terminal domain is sufficient to link ISG15 to UBE1L and UbcH8, the N-terminal domain is dispensable in the activation and transthiolation steps but required for efficient E3-mediated transfer of ISG15 from UbcH8 to its substrates. NS1B specifically binds to the N-terminal domain of ISG15 but does not affect ISG15 linkage via a thioester bond to its activating and conjugating enzymes. However, it does inhibit the formation of cellular ISG15 conjugates upon interferon treatment. We propose that the N-terminal UbL domain of ISG15 mainly functions in the ligation step and NS1B inhibits ISGylation by competing with E3 ligases for binding to the N-terminal domain.
- Ryu KS et al.
- Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system.
- BMB Rep. 2008; 41: 852-7
- Display abstract
Little attention has been paid to the specificity between E2 and the target protein during ubiquitination, although RING-E3 induces a potential intra-molecular reaction by mediating the direct transfer of ubiquitin from E2 to the target protein. We have constructed artificial E2 fusion proteins in which a target protein (p27) is tethered to one of six E2s via a flexible linker. Interestingly, only three E2s (UbcH5b, hHR6b, and Cdc34) are able to ubiquitinate p27 via an intra-molecular reaction in this system. Although the first ubiquitination of p27 (p27-Ub) by Cdc34 is less efficient than that of UbcH5b and hHR6b, the additional ubiquitin attachment to p27-Ub by Cdc34 is highly efficient. The E2 core of Cdc34 provides specificity to p27, and the residues 184-196 are required for possessive ubiquitination by Cdc34. We demonstrate direct E2 specificity for p27 and also show that differential ubiquitin linkages can be dependent on E2 alone.
- Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA
- Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation.
- Cell. 2008; 134: 995-1006
- Display abstract
Cullin-RING ligases (CRLs) comprise the largest ubiquitin E3 subclass, in which a central cullin subunit links a substrate-binding adaptor with an E2-binding RING. Covalent attachment of the ubiquitin-like protein NEDD8 to a conserved C-terminal domain (ctd) lysine stimulates CRL ubiquitination activity and prevents binding of the inhibitor CAND1. Here we report striking conformational rearrangements in the crystal structure of NEDD8~Cul5(ctd)-Rbx1 and SAXS analysis of NEDD8~Cul1(ctd)-Rbx1 relative to their unmodified counterparts. In NEDD8ylated CRL structures, the cullin WHB and Rbx1 RING subdomains are dramatically reoriented, eliminating a CAND1-binding site and imparting multiple potential catalytic geometries to an associated E2. Biochemical analyses indicate that the structural malleability is important for both CRL NEDD8ylation and subsequent ubiquitination activities. Thus, our results point to a conformational control of CRL activity, with ligation of NEDD8 shifting equilibria to disfavor inactive CAND1-bound closed architectures, and favor dynamic, open forms that promote polyubiquitination.
- Nakai T, Kuramitsu S, Kamiya N
- Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes.
- J Biochem. 2008; 143: 747-58
- Display abstract
Pyruvate dehydrogenase (PDH), branched-chain 2-oxo acid dehydrogenase (BCDH) and 2-oxoglutarate dehydrogenase (OGDH) are multienzyme complexes that play crucial roles in several common metabolic pathways. These enzymes belong to a family of 2-oxo acid dehydrogenase complexes that contain multiple copies of three different components (E1, E2 and E3). For the Thermus thermophilus enzymes, depending on its substrate specificity (pyruvate, branched-chain 2-oxo acid or 2-oxoglutarate), each complex has distinctive E1 (E1p, E1b or E1o) and E2 (E2p, E2b or E2o) components and one of the two possible E3 components (E3b and E3o). (The suffixes, p, b and o identify their respective enzymes, PDH, BCDH and OGDH.) Our biochemical characterization demonstrates that only three specific E3*E2 complexes can form (E3b*E2p, E3b*E2b and E3o*E2o). X-ray analyses of complexes formed between the E3 components and the peripheral subunit-binding domains (PSBDs), derived from the corresponding E2-binding partners, reveal that E3b interacts with E2p and E2b in essentially the same manner as observed for Geobacillus stearothermophilus E3*E2p, whereas E3o interacts with E2o in a novel fashion. The buried intermolecular surfaces of the E3b*PSBDp/b and E3o*PSBDo complexes differ in size, shape and charge distribution and thus, these differences presumably confer the binding specificities for the complexes.
- Haas AL
- Structural insights into early events in the conjugation of ubiquitin and ubiquitin-like proteins.
- Mol Cell. 2007; 27: 174-5
- Display abstract
NMR studies of the SUMO-activating enzyme in complex with Ubc9 (Wang et al., 2007, this issue of Molecular Cell) complement a recent crystal structure of Ubc12 bound to the NEDD8-activating enzyme ternary complex (Huang et al., 2007), elucidating details of the first steps in the conjugation of ubiquitin and ubiquitin-like proteins.
- Pelzer C et al.
- UBE1L2, a novel E1 enzyme specific for ubiquitin.
- J Biol Chem. 2007; 282: 23010-4
- Display abstract
UBE1 is known as the human ubiquitin-activating enzyme (E1), which activates ubiquitin in an ATP-dependent manner. Here, we identified a novel human ubiquitin-activating enzyme referred to as UBE1L2, which also shows specificity for ubiquitin. The UBE1L2 sequence displays a 40% identity to UBE1 and also contains an ATP-binding domain and an active site cysteine conserved among E1 family proteins. UBE1L2 forms a covalent link with ubiquitin in vitro and in vivo, which is sensitive to reducing conditions. In an in vitro polyubiquitylation assay, recombinant UBE1L2 could activate ubiquitin and transfer it onto the ubiquitin-conjugating enzyme UbcH5b. Ubiquitin activated by UBE1L2 could be used for ubiquitylation of p53 by MDM2 and supported the autoubiquitylation of the E3 ubiquitin ligases HectH9 and E6-AP. The UBE1L2 mRNA is most abundantly expressed in the testis, suggesting an organ-specific regulation of ubiquitin activation.
- Zhu X, Menard R, Sulea T
- High incidence of ubiquitin-like domains in human ubiquitin-specific proteases.
- Proteins. 2007; 69: 1-7
- Display abstract
Ubiquitin-specific proteases (USPs) emerge as key regulators of numerous cellular processes and account for the bulk of human deubiquitinating enzymes (DUBs). Their modular structure, mostly annotated by sequence homology, is believed to determine substrate recognition and subcellular localization. Currently, a large proportion of known human USP sequences are not annotated either structurally or functionally, including regions both within and flanking their catalytic cores. To extend the current understanding of human USPs, we applied consensus fold recognition to the unannotated content of the human USP family. The most interesting discovery was the marked presence of reliably predicted ubiquitin-like (UBL) domains in this family of enzymes. The UBL domain thus appears to be the most frequently occurring domain in the human USP family, after the characteristic catalytic domain. The presence of multiple UBL domains per USP protein, as well as of UBL domains embedded in the USP catalytic core, add to the structural complexity currently recognized for many DUBs. Possible functional roles of the newly uncovered UBL domains of human USPs, including proteasome binding, and substrate and protein target specificities, are discussed.
- Capili AD, Lima CD
- Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction.
- J Mol Biol. 2007; 369: 608-18
- Display abstract
The SUMO E2 Ubc9 serves as a lynchpin in the SUMO conjugation pathway, interacting with the SUMO E1 during activation, with thioester linked SUMO after E1 transfer and with the substrate and SUMO E3 ligases during conjugation. Here, we describe the structure determination of a non-covalent complex between human Ubc9 and SUMO-1 at 2.4 A resolution. Non-covalent interactions between Ubc9 and SUMO are conserved in human and yeast insomuch as human Ubc9 interacts with each of the human SUMO isoforms, and yeast Ubc9 interacts with Smt3, the yeast SUMO ortholog. Structural comparisons reveal similarities to several other non-covalent complexes in the ubiquitin pathway, suggesting that the non-covalent Ubc9-SUMO interface may be important for poly-SUMO chain formation, for E2 recruitment to SUMO conjugated substrates, or for mediating E2 interactions with either E1 or E3 ligases. Biochemical analysis suggests that this surface is less important for E1 activation or di-SUMO-2 formation, but more important for E3 interactions and for poly-SUMO chain formation when the chain exceeds more than two SUMO proteins.
- Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C
- Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation.
- Nat Struct Mol Biol. 2006; 13: 915-20
- Display abstract
Lys63-linked polyubiquitin chains participate in nonproteolytic signaling pathways, including regulation of DNA damage tolerance and NF-kappaB activation. E2 enzymes bound to ubiquitin E2 variants (UEV) are vital in these pathways, synthesizing Lys63-linked polyubiquitin chains, but how these complexes achieve specificity for a particular lysine linkage has been unclear. We have determined the crystal structure of an Mms2-Ubc13-ubiquitin (UEV-E2-Ub) covalent intermediate with donor ubiquitin linked to the active site residue of Ubc13. In the structure, the unexpected binding of a donor ubiquitin of one Mms2-Ubc13-Ub complex to the acceptor-binding site of Mms2-Ubc13 in an adjacent complex allows us to visualize at atomic resolution the molecular determinants of acceptor-ubiquitin binding. The structure reveals the key role of Mms2 in allowing selective insertion of Lys63 into the Ubc13 active site and suggests a molecular model for polyubiquitin chain elongation.
- Xu Z, Devlin KI, Ford MG, Nix JC, Qin J, Misra S
- Structure and interactions of the helical and U-box domains of CHIP, the C terminus of HSP70 interacting protein.
- Biochemistry. 2006; 45: 4749-59
- Display abstract
The heat-shock proteins Hsp70 and Hsp90 play a crucial role in regulating protein quality control both by refolding and by preventing the aggregation of misfolded proteins. It has recently been shown that Hsp70 and Hsp90 act not only in protein refolding but also cooperate with the C terminus of Hsp70 interacting protein (CHIP), a multidomain ubiquitin ligase, to mediate the degradation of unfolded proteins. We present the crystal structure of the helical linker domain and U-box domain of zebrafish CHIP (DrCHIP-HU). The structure of DrCHIP-HU shows a symmetric homodimer. The conformation of the helical linker domains and the relative positions of the helical and U-box domains differ substantially in DrCHIP-HU from those in a recently published structure of an asymmetric dimer of mammalian (mouse) CHIP. We used an in vitro ubiquitination assay to identify residues, located on two long loops and a central alpha helix of the CHIP U-box domain, that are important for interacting with the ubiquitin-conjugating enzyme UbcH5b. In addition, we used NMR spectroscopy to define a complementary interaction surface located on the N-terminal alpha helix and the L4 and L7 loops of UbcH5b. Our results provide insights into conformational variability in the domain arrangement of CHIP and into U-box-mediated recruitment of UbcH5b for the ubiquitination of Hsp70 and Hsp90 substrates.
- Brzovic PS, Klevit RE
- Ubiquitin transfer from the E2 perspective: why is UbcH5 so promiscuous?
- Cell Cycle. 2006; 5: 2867-73
- Display abstract
Protein ubiquitination is a regulatory process that influences nearly every aspect of eukaryotic cell biology. Pathways that range from cell-cycle progression and differentiation to DNA repair to vesicle budding all rely on regulated modification of target proteins by ubiquitin. Target proteins can be tagged by a single molecule of ubiquitin or modified by ubiquitin polymers that can vary in length and linkage specificity, and these variations influence how ubiquitination signals are interpreted. Surprisingly, little is understood regarding mechanisms of protein ubiquitination and how poly-ubiquitin chains are synthesized. Simple models to explain ubiquitin transfer have dominated the literature, but recent work suggests basic assumptions as to how proteins assemble to facilitate protein ubiquitination and poly-ubiquitin chain synthesis should be reexamined. This is particularly necessary for understanding the roles played by E2 ubiquitin-conjugating enzymes, a central protein component in all ubiquitin transfer reactions. In particular, UbcH5, a canonical E2 protein that is active in a broad number of in vitro ubiquitin transfer reactions, is capable of binding ubiquitin noncovalently on a surface distinct from its active site. This unique property allows activated UbcH5 approximately Ub complexes to self-assemble and has a profound influence on poly-ubiquitin chain synthesis.
- Yunus AA, Lima CD
- Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway.
- Nat Struct Mol Biol. 2006; 13: 491-9
- Display abstract
E2 conjugating proteins that transfer ubiquitin and ubiquitin-like modifiers to substrate lysine residues must first activate the lysine nucleophile for conjugation. Genetic complementation revealed three side chains of the E2 Ubc9 that were crucial for normal growth. Kinetic analysis revealed modest binding defects but substantially lowered catalytic rates for these mutant alleles with respect to wild-type Ubc9. X-ray structures for wild-type and mutant human Ubc9-RanGAP1 complexes showed partial loss of contacts to the substrate lysine in mutant complexes. Computational analysis predicted pK perturbations for the substrate lysine, and Ubc9 mutations weakened pK suppression through improper side chain coordination. Biochemical studies with p53, RanGAP1 and the Nup358/RanBP2 E3 were used to determine rate constants and pK values, confirming both structural and computational predictions. It seems that Ubc9 uses an indirect mechanism to activate lysine for conjugation that may be conserved among E2 family members.
- Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N
- Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery.
- Nature. 2006; 443: 590-3
- Display abstract
Protein ubiquitination is a common form of post-translational modification that regulates a broad spectrum of protein substrates in diverse cellular pathways. Through a three-enzyme (E1-E2-E3) cascade, the attachment of ubiquitin to proteins is catalysed by the E3 ubiquitin ligase, which is best represented by the superfamily of the cullin-RING complexes. Conserved from yeast to human, the DDB1-CUL4-ROC1 complex is a recently identified cullin-RING ubiquitin ligase, which regulates DNA repair, DNA replication and transcription, and can also be subverted by pathogenic viruses to benefit viral infection. Lacking a canonical SKP1-like cullin adaptor and a defined substrate recruitment module, how the DDB1-CUL4-ROC1 E3 apparatus is assembled for ubiquitinating various substrates remains unclear. Here we present crystallographic analyses of the virally hijacked form of the human DDB1-CUL4A-ROC1 machinery, which show that DDB1 uses one beta-propeller domain for cullin scaffold binding and a variably attached separate double-beta-propeller fold for substrate presentation. Through tandem-affinity purification of human DDB1 and CUL4A complexes followed by mass spectrometry analysis, we then identify a novel family of WD40-repeat proteins, which directly bind to the double-propeller fold of DDB1 and serve as the substrate-recruiting module of the E3. Together, our structural and proteomic results reveal the structural mechanisms and molecular logic underlying the assembly and versatility of a new family of cullin-RING E3 complexes.
- Ding H et al.
- Solution structure of human SUMO-3 C47S and its binding surface for Ubc9.
- Biochemistry. 2005; 44: 2790-9
- Display abstract
Small ubiquitin-related modifier SUMO-3 is a member of a growing family of ubiquitin-like proteins (Ubls). So far, four isoforms of SUMO have been identified in humans. It is generally known that SUMO modification regulates protein localization and activity. Previous structure and function studies have been mainly focused on SUMO-1. The sequence of SUMO-3 is 46% identical with that of SUMO-1; nevertheless, functional heterogeneity has been found between the two homologues. Here we report the solution structure of SUMO-3 C47S (residues 14-92) featuring the beta-beta-alpha-beta-beta-alpha-beta ubiquitin fold. Structural comparison shows that SUMO-3 C47S resembles ubiquitin more than SUMO-1. On the helix-sheet interface, a strong hydrophobic interaction contributes to formation of the globular and compact fold. A Gly-Gly motif at the C-terminal tail, extending away from the core structure, is accessible to enzymes and substrates. In vivo, SUMO modification proceeds via a multistep pathway, and Ubc9 plays an indispensable role as the SUMO conjugating enzyme (E2) in this process. To develop a better understanding of SUMO-3 conjugation, the Ubc9 binding surface on SUMO-3 C47S has been detected by chemical shift perturbation using NMR spectroscopy. The binding site mainly resides on the hydrophilic side of the beta-sheet. Negatively charged and hydrophobic residues of this region are highly or moderately conserved among SUMO family members. Notably, the negatively charged surface of SUMO-3 C47S is highly complementary in its electrostatic potentials and hydrophobicity to the positively charged surface of Ubc9. This work indicates dissimilarities between SUMO-3 and SUMO-1 in tertiary structure and provides insight into the specific interactions of SUMO-3 with its modifying enzyme.
- Lois LM, Lima CD
- Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1.
- EMBO J. 2005; 24: 439-51
- Display abstract
E1 enzymes facilitate conjugation of ubiquitin and ubiquitin-like proteins through adenylation, thioester transfer within E1, and thioester transfer from E1 to E2 conjugating proteins. Structures of human heterodimeric Sae1/Sae2-Mg.ATP and Sae1/Sae2-SUMO-1-Mg.ATP complexes were determined at 2.2 and 2.75 A resolution, respectively. Despite the presence of Mg.ATP, the Sae1/Sae2-SUMO-1-Mg.ATP structure reveals a substrate complex insomuch as the SUMO C-terminus remains unmodified within the adenylation site and 35 A from the catalytic cysteine, suggesting that additional changes within the adenylation site may be required to facilitate chemistry prior to adenylation and thioester transfer. A mechanism for E2 recruitment to E1 is suggested by biochemical and genetic data, each of which supports a direct role for the E1 C-terminal ubiquitin-like domain for E2 recruitment during conjugation.
- Slagsvold T et al.
- Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain.
- J Biol Chem. 2005; 280: 19600-6
- Display abstract
Ubiquitination serves as a key sorting signal in the lysosomal degradation of endocytosed receptors through the ability of ubiquitinated membrane proteins to be recognized and sorted by ubiquitin-binding proteins along the endocytic route. The ESCRT-II complex in yeast contains one such protein, Vps36, which harbors a ubiquitin-binding NZF domain and is required for vacuolar sorting of ubiquitinated membrane proteins. Surprisingly, the presumptive mammalian ortholog Eap45 lacks the ubiquitin-binding module of Vps36, and it is thus not clear whether mammalian ESCRT-II functions to bind ubiquitinated cargo. In this paper, we provide evidence that Eap45 contains a novel ubiquitin-binding domain, GLUE (GRAM-like ubiquitin-binding in Eap45), which binds ubiquitin with similar affinity and specificity as other ubiquitin-binding domains. The GLUE domain shares similarities in its primary and predicted secondary structures to phosphoinositide-binding GRAM and PH domains. Accordingly, we find that Eap45 binds to a subset of 3-phosphoinositides, suggesting that ubiquitin recognition could be coordinated with phosphoinositide binding. Furthermore, we show that Eap45 colocalizes with ubiquitinated proteins on late endosomes. These results are consistent with a role for Eap45 in endosomal sorting of ubiquitinated cargo.
- Tolbert BS et al.
- The active site cysteine of ubiquitin-conjugating enzymes has a significantly elevated pKa: functional implications.
- Biochemistry. 2005; 44: 16385-91
- Display abstract
Ubiquitin-conjugating enzymes (E2s or Ubcs) are essential components in the ubiquitination apparatus. These enzymes accept ubiquitin from an E1 enzyme and then, usually with the aid of an E3 enzyme, donate the ubiquitin to the target protein. The function of E2 relies critically on the chemistry of its active site cysteine residue since this residue must form a thioester bond with the carboxyl terminus of ubiquitin. Despite the plethora of structural information that is available, there has been a notable dearth of information regarding the chemical basis of E2 function. Toward filling this large void in our understanding of E2 function, we have examined the pK(a) of the active site cysteine using a combination of experimental and theoretical approaches. We find, remarkably, that the pK(a) of the active site cysteine residue is elevated by approximately 2 pH units above that of a free cysteine. We have identified residues that contribute to the increase in this pK(a). On the basis of experimental values obtained with three different E2 proteins, we believe this to be a general and important characteristic of E2 protein chemistry. Sequence comparison suggests that the electrostatic environment is maintained not through strict residue conservation but through different combinations of residues near the active site. We propose that the elevated pK(a) is a regulatory mechanism that prevents the highly exposed cysteine residue in free E2 from reacting promiscuously with electron deficient chemical moieties in the cell.
- Reverter D, Wu K, Erdene TG, Pan ZQ, Wilkinson KD, Lima CD
- Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1.
- J Mol Biol. 2005; 345: 141-51
- Display abstract
The Nedd8 conjugation pathway is conserved from yeast to humans and is essential in many organisms. Nedd8 is conjugated to cullin proteins in a process that alters SCF E3 ubiquitin ligase activity, and it is presumed that Nedd8 deconjugation would reverse these effects. We now report the X-ray structures of the human Nedd8-specific protease, Den1, in a complex with the inhibitor Nedd8 aldehyde, thus revealing a model for the tetrahedral transition state intermediate generated during proteolysis. Although Den1 is closely related to the SUMO-specific protease family (Ulp/Senp family), structural analysis of the interface suggests determinants involved in Nedd8 selectivity by Den1 over other ubiquitin-like family members and suggests how the Ulp/Senp architecture has been modified to interact with different ubiquitin-like modifiers.
- Winkler GS, Timmers HT
- Structure-based approaches to create new E2-E3 enzyme pairs.
- Methods Enzymol. 2005; 399: 355-66
- Display abstract
The study of ubiquitin-conjugating enzymes (E2) and ubiquitin-protein ligases (E3) is complicated by the fact that a relatively limited number of E2 proteins interacts with a large number of E3 enzymes. Many E3 enzymes contain a RING domain. Based on structural and biochemical analysis of the complex between UbcH5b and the CNOT4 RING finger, we describe a rationale to design new E2-E3 enzyme pairs with altered specificity. In such enzyme pairs, the E2 and E3 proteins are each mutated so that they do not interact with their wild-type partner. However, a functional enzyme pair is reconstituted when both E2 and E3 mutants are combined. Such altered-specificity enzyme pairs may be valuable to study the physiological significance of particular E2-E3 interactions.
- Kim KI, Giannakopoulos NV, Virgin HW, Zhang DE
- Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation.
- Mol Cell Biol. 2004; 24: 9592-600
- Display abstract
Protein ISGylation is unique among ubiquitin-like conjugation systems in that the expression and conjugation processes are induced by specific stimuli, mainly via the alpha/beta interferon signaling pathway. It has been suggested that protein ISGylation plays a special role in the immune response, because of its interferon-signal dependency and its appearance only in higher eukaryotic organisms. Here, we report the identification of an ISG15-conjugating enzyme, Ubc8. Like other components of the protein ISGylation system (ISG15, UBE1L, and UBP43), Ubc8 is an interferon-inducible protein. Ubc8 clearly mediates protein ISGylation in transfection assays. The reduction of Ubc8 expression by small interfering RNA causes a decrease in protein ISGylation in HeLa cells upon interferon treatment. Neither UbcH7/UbcM4, the closest homologue of Ubc8 among known ubiquitin E2s, nor the small ubiquitin-like modifier E2 Ubc9 supports protein ISGylation. These findings strongly suggest that Ubc8 is a major ISG15-conjugating enzyme responsible for protein ISGylation upon interferon stimulation. Furthermore, we established an assay system to detect ISGylated target proteins by cotransfection of ISG15, UBE1L, and Ubc8 together with a target protein to be analyzed. This method provides an easy and effective way to identify new targets for the ISGylation system and will facilitate related studies.
- Houben K, Dominguez C, van Schaik FM, Timmers HT, Bonvin AM, Boelens R
- Solution structure of the ubiquitin-conjugating enzyme UbcH5B.
- J Mol Biol. 2004; 344: 513-26
- Display abstract
The ubiquitination pathway is the main pathway for protein degradation in eukaryotic cells. The attachment of ubiquitin to a substrate protein is catalyzed by three types of enzymes, namely a ubiquitin activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin ligase (E3). Here, the structure of the human ubiquitin-conjugating enzyme (E2) UbcH5B has been solved by a combination of homology modeling, NMR relaxation data and automated NOE assignments. Comparison to E2 structures solved previously by X-ray crystallography or NMR shows in all cases the same compact fold, but differences are observed in the orientation of both N and C-terminal alpha-helices. The N-terminal helix that is involved in binding to ubiquitin ligases (E3) displays a different position, which could have consequences for precise E2-E3 recognition. In addition, multiple conformations of the side-chain of Asn77 are found in solution, which contrasts the single hydrogen-bonded conformation in the crystal structures of E2 enzymes. The possible implication of this conformational freedom of Asn77 for its catalytic function is discussed.
- Plafker SM, Plafker KS, Weissman AM, Macara IG
- Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import.
- J Cell Biol. 2004; 167: 649-59
- Display abstract
Ubiquitin is a small polypeptide that is conjugated to proteins and commonly serves as a degradation signal. The attachment of ubiquitin (Ub) to a substrate proceeds through a multi-enzyme cascade involving an activating enzyme (E1), a conjugating enzyme (E2), and a protein ligase (E3). We previously demonstrated that a murine E2, UbcM2, is imported into nuclei by the transport receptor importin-11. We now show that the import mechanism for UbcM2 and two other human class III E2s (UbcH6 and UBE2E2) uniquely requires the covalent attachment of Ub to the active site cysteine of these enzymes. This coupling of E2 activation and transport arises from the selective interaction of importin-11 with the Ub-loaded forms of these enzymes. Together, these findings reveal that Ub charging can function as a nuclear import trigger, and identify a novel link between E2 regulation and karyopherin-mediated transport.
- Tatham MH et al.
- Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation.
- Biochemistry. 2003; 42: 9959-69
- Display abstract
Covalent posttranslational modification of target proteins with ubiquitin and ubiquitin-like proteins regulates many important cellular processes. However, the molecular mechanisms by which these proteins are activated and conjugated to substrates has yet to be fully understood. NMR studies have shown that the ubiquitin-like proteins SUMO-1, -2, and -3 interact with the same N-terminal region of the E2 conjugating enzyme Ubc9 with similar affinities. This is correlated to their almost identical utilization by Ubc9 in the SUMO conjugation pathway. To investigate the functional significance of this interaction, site-directed mutagenesis was used to alter residues in the SUMO binding surface of Ubc9, and the effect of the amino acid substitutions on binding and conjugation to SUMO-1 and target protein RanGAP1 was investigated by isothermal titration calorimetry and biochemical analysis. R13A/K14A and R17A/K18A mutations in Ubc9 disrupted the interaction with SUMO-1 but did not completely abolish the interaction with E1. While these Ubc9 mutants displayed a significantly reduced efficiency in the transfer of SUMO-1 from E1 to E2, their ability to recognize substrate and transfer SUMO-1 from E2 to the target protein was unaffected. These results suggest that the noncovalent binding site of SUMO-1 on Ubc9, although distant from the active site, is important for the transfer of SUMO-1 from the E1 to the E2. The conservation of E2 enzymes across the ubiquitin and ubiquitin-like protein pathways indicates that analogous N-terminal sites of E2 enzymes are likely to have similar roles in general.
- Hamilton KS et al.
- Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail.
- Structure. 2001; 9: 897-904
- Display abstract
BACKGROUND: Ubiquitin-conjugating enzymes (E2s) are central enzymes involved in ubiquitin-mediated protein degradation. During this process, ubiquitin (Ub) and the E2 protein form an unstable E2-Ub thiolester intermediate prior to the transfer of ubiquitin to an E3-ligase protein and the labeling of a substrate for degradation. A series of complex interactions occur among the target substrate, ubiquitin, E2, and E3 in order to efficiently facilitate the transfer of the ubiquitin molecule. However, due to the inherent instability of the E2-Ub thiolester, the structural details of this complex intermediate are not known. RESULTS: A three-dimensional model of the E2-Ub thiolester intermediate has been determined for the catalytic domain of the E2 protein Ubc1 (Ubc1(Delta450)) and ubiquitin from S. cerevisiae. The interface of the E2-Ub intermediate was determined by kinetically monitoring thiolester formation by 1H-(15)N HSQC spectra by using combinations of 15N-labeled and unlabeled Ubc1(Delta450) and Ub proteins. By using the surface interface as a guide and the X-ray structures of Ub and the 1.9 A structure of Ubc1(Delta450) determined here, docking simulations followed by energy minimization were used to produce the first model of a E2-Ub thiolester intermediate. CONCLUSIONS: Complementary surfaces were found on the E2 and Ub proteins whereby the C terminus of Ub wraps around the E2 protein terminating in the thiolester between C88 (Ubc1(Delta450)) and G76 (Ub). The model supports in vivo and in vitro experiments of E2 derivatives carrying surface residue substitutions. Furthermore, the model provides insights into the arrangement of Ub, E2, and E3 within a ternary targeting complex.
- VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C
- Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer.
- Cell. 2001; 105: 711-20
- Display abstract
While the signaling properties of ubiquitin depend on the topology of polyubiquitin chains, little is known concerning the molecular basis of specificity in chain assembly and recognition. UEV/Ubc complexes have been implicated in the assembly of Lys63-linked polyubiquitin chains that act as a novel signal in postreplicative DNA repair and I kappa B alpha kinase activation. The crystal structure of the Mms2/Ubc13 heterodimer shows the active site of Ubc13 at the intersection of two channels that are potential binding sites for the two substrate ubiquitins. Mutations that destabilize the heterodimer interface confer a marked UV sensitivity, providing direct evidence that the intact heterodimer is necessary for DNA repair. Selective mutations in the channels suggest a molecular model for specificity in the assembly of Lys63-linked polyubiquitin signals.
- Domingo GJ, Chauhan HJ, Lessard IA, Fuller C, Perham RN
- Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus.
- Eur J Biochem. 1999; 266: 1136-46
- Display abstract
The pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus was reconstituted in vitro from recombinant proteins derived from genes over-expressed in Escherichia coli. Titrations of the icosahedral (60-mer) dihydrolipoyl acetyltransferase (E2) core component with the pyruvate decarboxylase (E1, alpha2beta2) and dihydrolipoyl dehydrogenase (E3, alpha2) peripheral components indicated a variable composition defined predominantly by tight and mutually exclusive binding of E1 and E3 with the peripheral subunit-binding domain of each E2 chain. However, both analysis of the polypeptide chain ratios in complexes generated from various mixtures of E1 and E3, and displacement of E1 or E3 from E1-E2 or E3-E2 subcomplexes by E3 or E1, respectively, showed that the multienzyme complex does not behave as a simple competitive binding system. This implies the existence of secondary interactions between the E1 and E3 subunits and E2 that only become apparent on assembly. Exact geometrical distribution of E1 and E3 is unlikely and the results are best explained by preferential arrangements of E1 and E3 on the surface of the E2 core, superimposed on their mutually exclusive binding to the peripheral subunit-binding domain of the E2 chain. Correlation of the subunit composition with the overall catalytic activity of the enzyme complex confirmed the lack of any requirement for precise stoichiometry or strict geometric arrangement of the three catalytic sites and emphasized the crucial importance of the flexibility associated with the lipoyl domains and intramolecular acetyl group transfer in the mechanism of active-site coupling.
- Wilkinson KD et al.
- The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3.
- J Mol Biol. 1999; 291: 1067-77
- Display abstract
The ubiquitin fold is a versatile and widely used targeting signal that is added post-translationally to a variety of proteins. Covalent attachment of one or more ubiquitin domains results in localization of the target protein to the proteasome, the nucleus, the cytoskeleton or the endocytotic machinery. Recognition of the ubiquitin domain by a variety of enzymes and receptors is vital to the targeting function of ubiquitin. Several parallel pathways exist and these must be able to distinguish among ubiquitin, several different types of polymeric ubiquitin, and the various ubiquitin-like domains. Here we report the first molecular description of the binding site on ubiquitin for ubiquitin C-terminal hydrolase L3 (UCH-L3). The site on ubiquitin was experimentally determined using solution NMR, and site-directed mutagenesis. The site on UCH-L3 was modeled based on X-ray crystallography, multiple sequence alignments, and computer-aided docking. Basic residues located on ubiquitin (K6, K11, R72, and R74) are postulated to contact acidic residues on UCH-L3 (E10, E14, D33, E219). These putative interactions are testable and fully explain the selectivity of ubiquitin domain binding to this enzyme.
- Cook WJ, Jeffrey LC, Carson M, Chen Z, Pickart CM
- Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2).
- J Biol Chem. 1992; 267: 16467-71
- Display abstract
Covalent ligation of multiubiquitin chains targets eukaryotic proteins for degradation. In such multiubiquitin chains, successive ubiquitins are linked by an isopeptide bond involving the side chain of Lys48 and the carboxyl group of Gly76. The crystal structure of a diubiquitin conjugate has been determined and refined at 2.3-A resolution. The molecule has internal approximate 2-fold symmetry with multiple hydrophobic and hydrophilic contacts along the 2-fold axis. The structure of the diubiquitin conjugate suggests determinants for recognition of multiubiquitin chains. A model for the interaction of diubiquitin and a ubiquitin conjugating enzyme (E2) is proposed.
- Mach H et al.
- Influence of shell effects and stable octupole deformation on the E1 and E2 transition rates in the heavy-Ba region.
- Phys Rev C Nucl Phys. 1990; 41: 2469-2473
- Holzmann R et al.
- Structure in the E2 quasicontinuum spectrum of 154Dy.
- Phys Rev Lett. 1989; 62: 520-523
- Hershko A, Heller H, Elias S, Ciechanover A
- Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown.
- J Biol Chem. 1983; 258: 8206-14
- Display abstract
By affinity chromatography of a crude reticulocyte extract on ubiquitin-Sepharose, three enzymes required for the conjugation of ubiquitin with proteins have been isolated. One is the ubiquitin-activating enzyme (E1), which is covalently linked to the affinity column in the presence of ATP and can be specifically eluted with AMP and pyrophosphate (Ciechanover, A., Elias, S., Heller, H., and Hershko, A. (1982) J. Biol. Chem. 257, 2537-2542). A second enzyme, designated E2, is bound to the ubiquitin column when E1 and ATP are present, and is eluted with a thiol compound at high concentration. The third enzyme, designated E3, is adsorbed to the affinity column by noncovalent interactions and can be eluted with high salt or increased pH. The presence of all three enzymes is absolutely required for the conjugation of 125I-ubiquitin with proteins. All three affinity-purified enzymes are also required for the breakdown of 125I-albumin to acid-soluble material in the presence of ubiquitin, ATP, and the unadsorbed fraction of the affinity column. The following observations indicate that the function of E2 is the transfer of activated ubiquitin to the site of conjugation in the form of an E2-ubiquitin thiol ester intermediate. (a) E2 is rapidly inactivated by iodoacetamide, but can be protected against inactivation by a prior incubation with E1, ATP, and ubiquitin. This suggests an E1-mediated transfer of activated ubiquitin to an iodoacetamide-sensitive thiol site of E2. (b) The requirements for the binding of E2 to the ubiquitin column and the mode of its elution, cited above, are consistent with the notion that a covalent linkage is formed between E2 and Sepharose-bound ubiquitin. (c) Upon the incubation of 125I-ubiquitin with E1 and ATP, followed by the addition of purified E2, activated ubiquitin is transferred from E1 to several low molecular weight forms of E2, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The linkage of ubiquitin to all these forms has the characteristics of a thiol ester bond. In a further incubation with E3 and a protein substrate for conjugation, activated ubiquitin was transferred from the different forms of E2-ubiquitin to stable ubiquitin-protein conjugates. Thus, E3 is involved in the last step of the ligase system.