Secondary literature sources for GIT
The following references were automatically generated.
- Uchida H, Kondo A, Yoshimura Y, Mazaki Y, Sabe H
- PAG3/Papalpha/KIAA0400, a GTPase-activating protein for ADP-ribosylation factor (ARF), regulates ARF6 in Fcgamma receptor-mediated phagocytosis of macrophages.
- J Exp Med. 2001; 193: 955-66
- Display abstract
The Fcgamma receptor (FcgammaR)-mediated phagocytosis of macrophages is a complex process where remodeling of both the actin-based cytoskeleton and plasma membrane occur coordinately. Several different families of small GTPases are involved. We have isolated a GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF), paxillin-associated protein with ARFGAP activity (PAG)3/Papalpha/KIAA0400, from mature monocytes and macrophage-like cells. Mammalian ARFs fall into three classes, and the class III isoform (ARF6) has been shown to be involved in FcgammaR-mediated phagocytosis. Here we report that PAG3 is enriched together with ARF6 and F-actin at phagocytic cups formed beneath immunoglobulin G-opsonized beads in P388D1 macrophages, in which overexpression of ARF6, but not ARF1 (class I) or ARF5 (class II), inhibits the phagocytosis. Overexpression of PAG3, but not its GAP-inactive mutant, attenuated the focal accumulation of F-actin and blocked phagocytosis, although surface levels of the FcgammaRs were not affected. Other ubiquitously expressed ARFGAPs, G protein-coupled receptor kinase interactors GIT2 and GIT2-short/KIAA0148, which we have shown to exhibit GAP activity for ARF1 in COS-7 cells, did not accumulate at the phagocytic cups or inhibit phagocytosis. Moreover, cooverexpression of ARF6, but not ARF1 or ARF5, restored the phagocytic activity of PAG3-overexpressing cells. We propose that PAG3 acts as a GAP for ARF6 and is hence involved in FcgammaR-mediated phagocytosis in mouse macrophages.
- Huber I et al.
- Expression, purification, and properties of ADP-ribosylation factor (ARF) GTPase activating protein-1.
- Methods Enzymol. 2001; 329: 307-16
- Premont RT, Vitale N
- Purification and characterization of GIT family of ADP-ribosylation factor (ARF) GTPase-activating proteins.
- Methods Enzymol. 2001; 329: 335-43
- Mazaki Y et al.
- An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization.
- Mol Biol Cell. 2001; 12: 645-62
- Display abstract
Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein beta-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during integrin-mediated cell adhesion and intracellular signaling.
- Vitale N, Patton WA, Moss J, Vaughan M, Lefkowitz RJ, Premont RT
- GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6.
- J Biol Chem. 2000; 275: 13901-6
- Display abstract
ADP-ribosylation factor (ARF) proteins are key players in numerous vesicular trafficking events ranging from the formation and fusion of vesicles in the Golgi apparatus to exocytosis and endocytosis. To complete their GTPase cycle, ARFs require a guanine nucleotide-exchange protein to catalyze replacement of GDP by GTP and a GTPase-activating protein (GAP) to accelerate hydrolysis of bound GTP. Recently numerous guanine nucleotide-exchange proteins and GAP proteins have been identified and partially characterized. Every ARF GAP protein identified to date contains a characteristic zinc finger motif. GIT1 and GIT2, two members of a new family of G protein-coupled receptor kinase-interacting proteins, also contain a putative zinc finger motif and display ARF GAP activity. Truncation of the amino-terminal region containing the zinc finger motif prevented GAP activity of GIT1. One zinc molecule was found associated per molecule of purified recombinant ARF-GAP1, GIT1, and GIT2 proteins, suggesting the zinc finger motifs of ARF GAPs are functional and should play an important role in their GAP activity. Unlike ARF-GAP1, GIT1 and GIT2 stimulate hydrolysis of GTP bound to ARF6. Accordingly we found that the phospholipid dependence of the GAP activity of ARF-GAP1 and GIT proteins was quite different, as the GIT proteins are stimulated by phosphatidylinositol 3,4, 5-trisphosphate whereas ARF-GAP1 is stimulated by phosphatidylinositol 4,5-bisphosphate and diacylglycerol. These results suggest that although the mechanism of GTP hydrolysis is probably very similar in these two families of ARF GAPs, GIT proteins might specifically regulate the activity of ARF6 in cells in coordination with phosphatidylinositol 3-kinase signaling pathways.
- Claing A et al.
- Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity.
- Proc Natl Acad Sci U S A. 2000; 97: 1119-24
- Display abstract
Recently, we identified a GTPase-activating protein for the ADP ribosylation factor family of small GTP-binding proteins that we call GIT1. This protein initially was identified as an interacting partner for the G protein-coupled receptor kinases, and its overexpression was found to affect signaling and internalization of the prototypical beta(2)-adrenergic receptor. Here, we report that GIT1 overexpression regulates internalization of numerous, but not all, G protein-coupled receptors. The specificity of the GIT1 effect is not related to the type of G protein to which a receptor couples, but rather to the endocytic route it uses. GIT1 only affects the function of G protein-coupled receptors that are internalized through the clathrin-coated pit pathway in a beta-arrestin- and dynamin-sensitive manner. Furthermore, the GIT1 effect is not limited to G protein-coupled receptors because overexpression of this protein also affects internalization of the epidermal growth factor receptor. However, constitutive agonist-independent internalization is not regulated by GIT1, because transferrin uptake is not affected by GIT1 overexpression. Thus, GIT1 is a protein involved in regulating the function of signaling receptors internalized through the clathrin pathway and can be used as a diagnostic tool for defining the endocytic pathway of a receptor.
- Aoe T et al.
- The KDEL receptor regulates a GTPase-activating protein for ADP-ribosylation factor 1 by interacting with its non-catalytic domain.
- J Biol Chem. 1999; 274: 20545-9
- Display abstract
ADP-ribosylation factor 1 (ARF1) is a key regulator of transport in the secretory system. Like all small GTPases, deactivation of ARF1 requires a GTPase-activating protein (GAP) that promotes hydrolysis of GTP to GDP on ARF1. Structure-function analysis of a GAP for ARF1 revealed that its activity in vivo requires not only a domain that catalyzes hydrolysis of GTP on ARF1 but also a non-catalytic domain. In this study, we show that the non-catalytic domain of GAP is required for its recruitment from cytosol to membranes and that this domain mediates the interaction of GAP with the transmembrane KDEL receptor. Blocking its interaction with the KDEL receptor leaves the GAP cytosolic and prevents the deactivation in vivo of Golgi-localized ARF1. Thus, these findings suggest that the KDEL receptor plays a critical role in the function of GAP by regulating its recruitment from cytosol to membranes, where it can then act on its membrane-restricted target, the GTP-bound form of ARF1.
- Andreev J et al.
- Identification of a new Pyk2 target protein with Arf-GAP activity.
- Mol Cell Biol. 1999; 19: 2338-50
- Display abstract
Protein tyrosine kinase Pyk2 is activated by a variety of G-protein-coupled receptors and by extracellular signals that elevate intracellular Ca2+ concentration. We have identified a new Pyk2 binding protein designated Pap. Pap is a multidomain protein composed of an N-terminal alpha-helical region with a coiled-coil motif, followed by a pleckstrin homology domain, an Arf-GAP domain, an ankyrin homology region, a proline-rich region, and a C-terminal SH3 domain. We demonstrate that Pap forms a stable complex with Pyk2 and that activation of Pyk2 leads to tyrosine phosphorylation of Pap in living cells. Immunofluorescence experiments demonstrate that Pap is localized in the Golgi apparatus and at the plasma membrane, where it is colocalized with Pyk2. In addition, in vitro recombinant Pap exhibits strong GTPase-activating protein (GAP) activity towards the small GTPases Arf1 and Arf5 and weak activity towards Arf6. Addition of recombinant Pap protein to Golgi preparations prevented Arf-dependent generation of post-Golgi vesicles in vitro. Moreover, overexpression of Pap in cultured cells reduced the constitutive secretion of a marker protein. We propose that Pap functions as a GAP for Arf and that Pyk2 may be involved in regulation of vesicular transport through its interaction with Pap.
- Brown MT, Andrade J, Radhakrishna H, Donaldson JG, Cooper JA, Randazzo PA
- ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src.
- Mol Cell Biol. 1998; 18: 7038-51
- Display abstract
Membrane trafficking is regulated in part by small GTP-binding proteins of the ADP-ribosylation factor (Arf) family. Arf function depends on the controlled exchange and hydrolysis of GTP. We have purified and cloned two variants of a 130-kDa phosphatidylinositol 4, 5-biphosphate (PIP2)-dependent Arf1 GTPase-activating protein (GAP), which we call ASAP1a and ASAP1b. Both contain a pleckstrin homology (PH) domain, a zinc finger similar to that found in another Arf GAP, three ankyrin (ANK) repeats, a proline-rich region with alternative splicing and SH3 binding motifs, eight repeats of the sequence E/DLPPKP, and an SH3 domain. Together, the PH, zinc finger, and ANK repeat regions possess PIP2-dependent GAP activity on Arf1 and Arf5, less activity on Arf6, and no detectable activity on Arl2 in vitro. The cDNA for ASAP1 was independently identified in a screen for proteins that interact with the SH3 domain of the tyrosine kinase Src. ASAP1 associates in vitro with the SH3 domains of Src family members and with the Crk adapter protein. ASAP1 coprecipitates with Src from cell lysates and is phosphorylated on tyrosine residues in cells expressing activated Src. Both coimmunoprecipitation and tyrosine phosphorylation depend on the same proline-rich class II Src SH3 binding site required for in vitro association. By directly interacting with both Arfs and tyrosine kinases involved in regulating cell growth and cytoskeletal organization, ASAP1 could coordinate membrane remodeling events with these processes.
- Huber I, Cukierman E, Rotman M, Aoe T, Hsu VW, Cassel D
- Requirement for both the amino-terminal catalytic domain and a noncatalytic domain for in vivo activity of ADP-ribosylation factor GTPase-activating protein.
- J Biol Chem. 1998; 273: 24786-91
- Display abstract
The small GTP-binding protein ADP-ribosylation factor-1 (ARF1) regulates intracellular transport by modulating the interaction of coat proteins with the Golgi complex. Coat protein association with Golgi membranes requires activated, GTP-bound ARF1, whereas GTP hydrolysis catalyzed by an ARF1-directed GTPase-activating protein (GAP) deactivates ARF1 and results in coat protein dissociation. We have recently cloned a Golgi-associated ARF GAP. Overexpression of GAP was found to result in a phenotype that reflects ARF1 deactivation (Aoe, T., Cukierman, E., Lee, A., Cassel, D., Peters, P. J., and Hsu, V. W. (1997) EMBO J. 16, 7305-7316). In this study, we used this phenotype to define domains in GAP that are required for its function in vivo. As expected, mutations in the amino-terminal part of GAP that were previously found to abolish ARF GAP catalytic activity in vitro abrogated ARF1 deactivation in vivo. Significantly, truncations at the carboxyl-terminal part of GAP that did not affect GAP catalytic activity in vitro also diminished ARF1 deactivation. Thus, a noncatalytic domain is required for GAP activity in vivo. This domain may be involved in the targeting of GAP to the Golgi membrane.
- Vitale N, Moss J, Vaughan M
- ARD1, a 64-kDa bifunctional protein containing an 18-kDa GTP-binding ADP-ribosylation factor domain and a 46-kDa GTPase-activating domain.
- Proc Natl Acad Sci U S A. 1996; 93: 1941-4
- Display abstract
The alpha subunits of the heterotrimeric guanine nucleotide-binding proteins (G proteins) hydrolyze GTP at a rate significantly higher than do most members of the Ras family of approximatelly 20-kDa GTP-binding proteins, which depend on a GTPase-activating protein (GAP) for acceleration of GTP hydrolysis. It has been demonstrated that an inserted domain in the G-protein alpha subunit, not present in the much smaller Ras-like proteins, is responsible for this difference [Markby, D. W., Onrust, R. & Bourne, H. R. (1993) Science 262, 1895-1900]. We report here that ARD1, a 64-kDa protein with an 18-kDa carboxyl-terminal ADP-ribosylation factor (ARF) domain, exhibited significant GTPase activity, whereas the ARF domain, expressed as a recombinant protein in Escherichia coli, did not. Addition of the 46-kDa amino-terminal extension (similarly synthesized in E. coli) to the GTP-binding ARF-domain of ARD1 enhanced GTPase activity and inhibited GDP dissociation. The kinetic properties of mixtures of the ARF and non-ARF domains were similar to those of an intact recombinant ARD1. Physical association of the two proteins was demonstrated directly by gel filtration and by using the immobilized non-ARF domain. Thus, like the alpha subunits of heterotrimeric G proteins, ARD1 appears to consist of two domains that interact to regulate the biological activity of the protein.