Secondary literature sources for RAN
The following references were automatically generated.
- Zhang C, Clarke PR
- Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system.
- Curr Biol. 2001; 11: 208-12
- Display abstract
The molecular mechanism of nuclear envelope (NE) assembly is poorly understood, but in a cell-free system made from Xenopus eggs NE assembly is controlled by the small GTPase Ran [1,2]. In this system, Sepharose beads coated with Ran induce the formation of functional NEs in the absence of chromatin [1]. Both generation of Ran-GTP by the guanine nucleotide exchange factor RCC1 and GTP hydrolysis by Ran are required for NE assembly, although the roles of the GDP- and GTP-bound forms of Ran in the recruitment of precursor vesicles and their fusion have been unclear. We now show that beads coated with either Ran-GDP or Ran-GTP assemble functional nuclear envelopes in a cell-free system derived from mitotic human cells, forming pseudo-nuclei that actively transport proteins across the NE. Both RCC1 and the GTPase-activating protein RanGAP1 are recruited to the beads, allowing interconversion between Ran-GDP and Ran-GTP. However, addition of antibodies to RCC1 and RanGAP1 shows that Ran-GDP must be converted to Ran-GTP by RCC1 before precursor vesicles are recruited, whereas GTP hydrolysis by Ran stimulated by RanGAP1 promotes vesicle recruitment and is necessary for vesicle fusion to form an intact envelope. Thus, the GTP-GDP cycle of Ran controls both the recruitment of vesicles and their fusion to form NEs.
- Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y
- Role of importin-beta in coupling Ran to downstream targets in microtubule assembly.
- Science. 2001; 291: 653-6
- Display abstract
The guanosine triphosphatase Ran stimulates assembly of microtubule asters and spindles in mitotic Xenopus egg extracts. A carboxyl-terminal region of the nuclear-mitotic apparatus protein (NuMA), a nuclear protein required for organizing mitotic spindle poles, mimics Ran's ability to induce asters. This NuMA fragment also specifically interacted with the nuclear transport factor, importin-beta. We show that importin-beta is an inhibitor of microtubule aster assembly in Xenopus egg extracts and that Ran regulates the interaction between importin-beta and NuMA. Importin-beta therefore links NuMA to regulation by Ran. This suggests that similar mechanisms regulate nuclear import during interphase and spindle assembly during mitosis.
- Nemergut ME, Mizzen CA, Stukenberg T, Allis CD, Macara IG
- Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B.
- Science. 2001; 292: 1540-3
- Display abstract
The Ran guanosine triphosphatase (GTPase) controls nucleocytoplasmic transport, mitotic spindle formation, and nuclear envelope assembly. These functions rely on the association of the Ran-specific exchange factor, RCC1 (regulator of chromosome condensation 1), with chromatin. We find that RCC1 binds directly to mononucleosomes and to histones H2A and H2B. RCC1 utilizes these histones to bind Xenopus sperm chromatin, and the binding of RCC1 to nucleosomes or histones stimulates the catalytic activity of RCC1. We propose that the docking of RCC1 to H2A/H2B establishes the polarity of the Ran-GTP gradient that drives nuclear envelope assembly, nuclear transport, and other nuclear events.
- Renault L, Kuhlmann J, Henkel A, Wittinghofer A
- Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1).
- Cell. 2001; 105: 245-55
- Display abstract
RCC1 (regulator of chromosome condensation), a beta propeller chromatin-bound protein, is the guanine nucleotide exchange factor (GEF) for the nuclear GTP binding protein Ran. We report here the 1.8 A crystal structure of a Ran*RCC1 complex in the absence of nucleotide, an intermediate in the multistep GEF reaction. In contrast to previous structures, the phosphate binding region of the nucleotide binding site is perturbed only marginally, possibly due to the presence of a polyvalent anion in the P loop. Biochemical experiments show that a sulfate ion stabilizes the Ran*RCC1 complex and inhibits dissociation by guanine nucleotides. Based on the available structural and biochemical evidence, we present a unified scenario for the GEF mechanism where interaction of the P loop lysine with an acidic residue is a crucial element for the overall reaction.
- Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG
- Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export.
- J Cell Biol. 2001; 153: 1391-402
- Display abstract
Crm1 is a member of the karyopherin family of nucleocytoplasmic transport receptors and mediates the export of proteins from the nucleus by forming a ternary complex with cargo and Ran:GTP. This complex translocates through the nuclear pores and dissociates in the cytosol. The yeast protein Yrb2p participates in this pathway and binds Crm1, but its mechanism of action has not been established. We show that the human orthologue of Yrb2p, Ran-binding protein 3 (RanBP3), acts as a cofactor for Crm1-mediated export in a permeabilized cell assay. RanBP3 binds directly to Crm1, and the complex possesses an enhanced affinity for both Ran:GTP and cargo. RanBP3 shuttles between the nucleus and the cytoplasm by a Crm1-dependent mechanism, and the Crm1--RanBP3-NES-Ran:GTP quarternary complex can associate with nucleoporins. We infer that this complex translocates through the nuclear pore to the cytoplasm where it is disassembled by RanBP1 and Ran GTPase--activating protein.
- Dasso M
- Running on Ran: nuclear transport and the mitotic spindle.
- Cell. 2001; 104: 321-4
- Moore JD
- The Ran-GTPase and cell-cycle control.
- Bioessays. 2001; 23: 77-85
- Display abstract
RCC1, the chromatin-bound guanine-nucleotide exchange factor (GEF) for the small nuclear GTPase, Ran, is required for coordinating the onset of mitosis with S-phase completion in mammalian cells. Other defects in the Ran-GTPase network also result in disruption of cell-cycle processes such as DNA replication, exit from mitosis and, at least in budding yeast, accurate chromosome segregation. However, the Ran system is now best known for its pivotal role in nucleocytoplasmic transport, where RanGTP is used as a positional flag for the nucleus during interphase. Ran's effectors are the shuttling transport factors, importins and exportins, which facilitate the transit of cargoes between the nucleus and cytoplasm: RanGTP regulates their cargo-binding properties so that they can move their cargo in the correct direction. RanGTP also plays a separate role during mitosis, influencing microtubule polymerisation, possibly specifically in the vicinity of chromosomes. Most recently, Ran has been shown to be crucial for the regeneration of a nuclear envelope after exit from mitosis. So, can the problems with cell-cycle progression and control induced by perturbing the Ran-system be attributed to defects in these three processes? This article examines this issue, concentrating on vertebrate systems. BioEssays 23:77-85, 2001. Copyright 2001 John Wiley & Sons, Inc.
- Clouse KN, Luo MJ, Zhou Z, Reed R
- A Ran-independent pathway for export of spliced mRNA.
- Nat Cell Biol. 2001; 3: 97-9
- Display abstract
All major nuclear export pathways so far examined follow a general paradigm. Specifically, a complex is formed in the nucleus, containing the export cargo, a member of the importin-beta family of transporters and RanGTP. This complex is translocated across the nuclear pore to the cytoplasm, where hydrolysis of the GTP on Ran is stimulated by the GTPase-activating protein RanGAP. The activity of RanGAP is increased by RanBP1, which also promotes disassembly of RanGTP-cargo-transporter complexes. Here we investigate the role of RanGTP in the export of mRNAs generated by splicing. We show that nuclear injection of a Ran mutant (RanT24N) or the normally cytoplasmic RanGAP potently inhibits the export of both tRNA and U1 snRNA, but not of spliced mRNAs. Moreover, nuclear injection of RanGAP together with RanBP1 blocks tRNA export but does not affect mRNA export. These and other data indicate that export of spliced mRNA is the first major cellular transport pathway that is independent of the export co-factor Ran.
- Yoneda Y
- Nucleocytoplasmic protein traffic and its significance to cell function.
- Genes Cells. 2000; 5: 777-87
- Display abstract
In eukaryotic cells, cell functions are maintained in an orderly manner through the continuous traffic of various proteins between the cell nucleus and the cytoplasm. The nuclear import and export of proteins occurs through nuclear pore complexes and typically requires specific signals: the nuclear localization signal and nuclear export signal, respectively. The transport pathways have been found to be highly divergent, but are known to be largely mediated by importin beta-like transport receptor family molecules. These receptor molecules bind to and carry their cargoes directly or via adapter molecules. A small GTPase Ran ensures the directionality of nuclear transport by regulating the interaction between the receptors and their cargoes through its GTP/GDP cycle. Moreover, it has been recently elucidated how the transport system is involved in various functions of cell physiology, such as cell cycle control.
- Steggerda SM, Black BE, Paschal BM
- Monoclonal antibodies to NTF2 inhibit nuclear protein import by preventing nuclear translocation of the GTPase Ran.
- Mol Biol Cell. 2000; 11: 703-19
- Display abstract
Nuclear transport factor 2 (NTF2) is a soluble transport protein originally identified by its ability to stimulate nuclear localization signal (NLS)-dependent protein import in digitonin-permeabilized cells. NTF2 has been shown to bind nuclear pore complex proteins and the GDP form of Ran in vitro. Recently, it has been reported that NTF2 can stimulate the accumulation of Ran in digitonin-permeabilized cells. Evidence that NTF2 directly mediates Ran import or that NTF2 is required to maintain the nuclear concentration of Ran in living cells has not been obtained. Here we show that cytoplasmic injection of anti-NTF2 mAbs resulted in a dramatic relocalization of Ran to the cytoplasm. This provides the first evidence that NTF2 regulates the distribution of Ran in vivo. Moreover, anti-NTF2 mAbs inhibited nuclear import of both Ran and NLS-containing protein in vitro, suggesting that NTF2 stimulates NLS-dependent protein import by driving the nuclear accumulation of Ran. We also show that biotinylated NTF2-streptavidin microinjected into the cytoplasm accumulated at the nuclear envelope, indicating that NTF2 can target a binding partner to the nuclear pore complex. Taken together, our data show that NTF2 is an essential regulator of the Ran distribution in living cells and that NTF2-mediated Ran nuclear import is required for NLS-dependent protein import.
- Hetzer M, Mattaj IW
- An ATP-dependent, Ran-independent mechanism for nuclear import of the U1A and U2B" spliceosome proteins.
- J Cell Biol. 2000; 148: 293-303
- Display abstract
Nuclear import of the two uracil-rich small nuclear ribonucleoprotein (U snRNP) components U1A and U2B" is mediated by unusually long and complex nuclear localization signals (NLSs). Here we investigate nuclear import of U1A and U2B" in vitro and demonstrate that it occurs by an active, saturable process. Several lines of evidence suggest that import of the two proteins occurs by an import mechanism different to those characterized previously. No cross competition is seen with a variety of previously studied NLSs. In contrast to import mediated by members of the importin-beta family of nucleocytoplasmic transport receptors, U1A/U2B" import is not inhibited by either nonhydrolyzable guanosine triphosphate (GTP) analogues or by a mutant of the GTPase Ran that is incapable of GTP hydrolysis. Adenosine triphosphate is capable of supporting U1A and U2B" import, whereas neither nonhydrolyzable adenosine triphosphate analogues nor GTP can do so. U1A and U2B" import in vitro does not require the addition of soluble cytosolic proteins, but a factor or factors required for U1A and U2B" import remains tightly associated with the nuclear fraction of conventionally permeabilized cells. This activity can be solubilized in the presence of elevated MgCl(2). These data suggest that U1A and U2B" import into the nucleus occurs by a hitherto uncharacterized mechanism.
- Nemergut ME, Macara IG
- Nuclear import of the ran exchange factor, RCC1, is mediated by at least two distinct mechanisms.
- J Cell Biol. 2000; 149: 835-50
- Display abstract
RCC1, the only known guanine-nucleotide exchange factor for the Ran GTPase, is an approximately 45-kD nuclear protein that can bind chromatin. An important question concerns how RCC1 traverses the nuclear envelope. We now show that nuclear RCC1 is not exported readily in interphase cells and that the import of RCC1 into the nucleoplasm is extremely rapid. Import can proceed by at least two distinct mechanisms. The first is a classic import pathway mediated by basic residues within the NH(2)-terminal domain (NTD) of RCC1. This pathway is dependent upon both a preexisting Ran gradient and energy, and preferentially uses the importin-alpha3 isoform of importin-alpha. The second pathway is not mediated by the NTD of RCC1. This novel pathway does not require importin-alpha or importin-beta or the addition of any other soluble factor in vitro; however, this pathway is saturable and sensitive only to a subset of inhibitors of classical import pathways. Furthermore, the nuclear import of RCC1 does not require a preexisting Ran gradient or energy. We speculate that this second import pathway evolved to ensure that RCC1 never accumulates in the cytoplasm.
- Plafker SM, Macara IG
- Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2.
- EMBO J. 2000; 19: 5502-13
- Display abstract
Importins are members of a family of transport receptors (karyopherins) that mediate the nucleocytoplasmic transport of protein and RNA cargoes. We identified importin-11 as a potential new human member of this family, on the basis of limited similarity to the Saccharomyces cerevisiae protein, Lph2p, and cloned the complete open reading frame. Importin-11 interacts with the Ran GTPase, and constitutively shuttles between the nuclear and cytoplasmic compartments. A yeast dihybrid screen identified UbcM2, an E2-type ubiquitin-conjugating enzyme, as a binding partner and potential transport cargo for importin-11. Importin-11 and UbcM2 interact directly, and the complex is disassembled by Ran:GTP but not by Ran:GDP. UbcM2 is constitutively nuclear and shuttles between the nuclear and cytoplasmic compartments. Nuclear import of UbcM2 requires Ran and importin-11, and is inhibited by wheatgerm agglutinin, energy depletion or dominant interfering mutants of Ran and importin-beta. These data establish importin-11 as a new member of the karyopherin family of transport receptors, and identify UbcM2 as a nuclear member of the E2 ubiquitin-conjugating enzyme family.
- Wen Y, Shatkin AJ
- Cap methyltransferase selective binding and methylation of GpppG-RNA are stimulated by importin-alpha.
- Genes Dev. 2000; 14: 2944-9
- Display abstract
We screened a human cDNA library for proteins that bind mRNA cap methyltransferase (MT) and isolated nuclear transporter importin-alpha (Impalpha). This direct association was confirmed by glutathione S-transferase (GST) pulldown, coimmunoprecipitation, and nuclear colocalization. In gel shift assays, MT selectively bound RNA containing 5'-terminal GpppG, and binding was inhibited by GpppG and not by m(7)GpppC. Impalpha markedly enhanced MT binding to GpppG-RNA and stimulated MT activity. MT/RNA/Impalpha complexes were dissociated by importin-beta, which also blocked the stimulation of cap methylation by Impalpha. The presence of RanGTP but not RanGDP prevented these effects of importin-beta. These findings indicate that importins play a novel role in mRNA biogenesis at the level of cap methylation.
- Imamoto N
- [Nucleocytoplasmic transport of proteins]
- Tanpakushitsu Kakusan Koso. 2000; 45: 2369-77
- Petersen C, Orem N, Trueheart J, Thorner JW, Macara IG
- Random mutagenesis and functional analysis of the Ran-binding protein, RanBP1.
- J Biol Chem. 2000; 275: 4081-91
- Display abstract
Ran GTPase is required for nucleocytoplasmic transport of many types of cargo. Several proteins that recognize Ran in its GTP-bound state (Ran x GTP) possess a conserved Ran-binding domain (RanBD). Ran-binding protein-1 (RanBP1) has a single RanBD and is required for RanGAP-mediated GTP hydrolysis and release of Ran from nuclear transport receptors (karyopherins). In budding yeast (Saccharomyces cerevisiae), RanBP1 is encoded by the essential YRB1 gene; expression of mouse RanBP1 cDNA rescues the lethality of Yrb1-deficient cells. We generated libraries of mouse RanBP1 mutants and examined 11 mutants in vitro and for their ability to complement a temperature-sensitive yrb1 mutant (yrb1-51(ts)) in vivo. In 9 of the mutants, the alteration was a change in a residue (or 2 residues) that is conserved in all known RanBDs. However, 4 of these 9 mutants displayed biochemical properties indistinguishable from that of wild-type RanBP1. These mutants bound to Ran x GTP, stimulated RanGAP, inhibited the exchange activity of RCC1, and rescued growth of the yrb1-51(ts) yeast cells. Two of the 9 mutants altered in residues thought to be essential for interaction with Ran were unable to rescue growth of the yrb1(ts) mutant and did not bind detectably to Ran in vitro. However, one of these 2 mutants (and 2 others that were crippled in other RanBP1 functions) retained some ability to co-activate RanGAP. A truncated form of RanBP1 (lacking its nuclear export signal) was able to complement the yrb1(ts) mutation. When driven from the YRB1 promoter, 4 of the 5 mutants most impaired for Ran binding were unable to rescue growth of the yrb1(ts) cells; remarkably, these mutants could nevertheless form ternary complexes with importin-5 or importin-beta and Ran-GTP. The same mutants stimulated only inefficiently RanGAP-mediated GTP hydrolysis of the Ran x GTP x importin-5 complex. Thus, the essential biological activity of RanBP1 in budding yeast correlates not with Ran x GTP binding per se or with the ability to form ternary complexes with karyopherins, but with the capacity to potentiate RanGAP activity toward GTP-bound Ran in these complexes.
- Zhang C, Clarke PR
- Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts.
- Science. 2000; 288: 1429-32
- Display abstract
The nuclear envelope (NE) forms a controlled boundary between the cytoplasm and the nucleus of eukaryotic cells. To facilitate investigation of mechanisms controlling NE assembly, we developed a cell-free system made from Xenopus laevis eggs to study the process in the absence of chromatin. NEs incorporating nuclear pores were assembled around beads coated with the guanosine triphosphatase Ran, forming pseudo-nuclei that actively imported nuclear proteins. NE assembly required the cycling of guanine nucleotides on Ran and was promoted by RCC1, a nucleotide exchange factor recruited to beads by Ran-guanosine diphosphate (Ran-GDP). Thus, concentration of Ran-GDP followed by generation of Ran-GTP is sufficient to induce NE assembly.
- Plafker K, Macara IG
- Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1.
- Mol Cell Biol. 2000; 20: 3510-21
- Display abstract
The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)-RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin beta. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.
- Hetzer M, Bilbao-Cortes D, Walther TC, Gruss OJ, Mattaj IW
- GTP hydrolysis by Ran is required for nuclear envelope assembly.
- Mol Cell. 2000; 5: 1013-24
- Display abstract
Nuclear formation in Xenopus egg extracts requires cytosol and is inhibited by GTP gamma S, indicating a requirement for GTPase activity. Nuclear envelope (NE) vesicle fusion is extensively inhibited by GTP gamma S and two mutant forms of the Ran GTPase, Q69L and T24N. Depletion of either Ran or RCC1, the exchange factor for Ran, from the assembly reaction also inhibits this step of NE formation. Ran depletion can be complemented by the addition of Ran loaded with either GTP or GDP but not with GTP gamma S. RCC1 depletion is only complemented by RCC1 itself or by RanGTP. Thus, generation of RanGTP by RCC1 and GTP hydrolysis by Ran are both required for the extensive membrane fusion events that lead to NE formation.
- Lau D et al.
- Purification of protein A-tagged yeast ran reveals association with a novel karyopherin beta family member, Pdr6p.
- J Biol Chem. 2000; 275: 467-71
- Display abstract
The small GTPase Ran (encoded by GSP1 and GSP2 in yeast) plays a central role in nucleocytoplasmic transport. GSP1 and GSP2 were tagged with protein A and functionally expressed in a gsp1 null mutant. After affinity purification of protein A-tagged Gsp1p or Gsp2p by IgG-Sepharose chromatography, known karyopherin beta transport receptors (e.g. Kap121p and Kap123p) and a novel member of this protein family, Pdr6p, were found to be associated with yeast Ran. Subsequent tagging of Pdr6p with green fluorescent protein revealed association with the nuclear pore complexes in vivo. Thus, functional tagging of yeast Ran allowed the study of its in vivo distribution and interaction with known and novel Ran-binding proteins.
- Goldberg MW et al.
- Ran alters nuclear pore complex conformation.
- J Mol Biol. 2000; 300: 519-29
- Display abstract
Transport across the nuclear membranes occurs through the nuclear pore complex (NPC), and is mediated by soluble transport factors including Ran, a small GTPase that is generally GDP-bound during import and GTP-bound for export. The dynamic nature of the NPC structure suggests a possible active role for it in driving translocation. Here we show that RanGTP but not RanGDP causes alterations of NPC structure when injected into the cytoplasm of Xenopus oocytes, including compaction of the NPC and extension of the cytoplasmic filaments. RanGTP caused accumulation of nucleoplasmin-gold along the length of extended cytoplasmic filaments, whereas RanGDP caused accumulation around the cytoplasmic rim of the NPC. This suggests a possible role for Ran in altering the conformation of the cytoplasmic filaments during transport.
- Villa Braslavsky CI, Nowak C, Gorlich D, Wittinghofer A, Kuhlmann J
- Different structural and kinetic requirements for the interaction of Ran with the Ran-binding domains from RanBP2 and importin-beta.
- Biochemistry. 2000; 39: 11629-39
- Display abstract
The cytoplasmic disassembly of Ran.GTP.importin and Ran.GTP.exportin. cargo complexes is an essential step in the corresponding nuclear import and export cycles. It has previously been shown that such disassembly can be mediated by RanBP1 in the presence of RanGAP. The nuclear pore complex protein RanBP2 (Nup358) contains four Ran-binding domains (RanBDi) that might function like RanBP1. We used biophysical assays based on fluorescence-labeled probes and on surface plasmon resonance to investigate the dynamic interplay of Ran in its GDP- and GTP-complexed states with RanBDis and with importin-beta. We show that RanBP1 and the four RanBDis from RanBP2 have comparable affinities for Ran.GTP (10(8)-10(9) M(-1)). Deletion of Ran's C-terminal (211)DEDDDL(216) sequence weakens the interaction of Ran.GTP with RanBPis approximately 2000-fold, but accelerates the association of Ran.GTP with importin-beta 10-fold. Importin-beta binds Ran.GTP with a moderate rate, but attains a high affinity for Ran (K(D) = 140 pM) via an extremely low dissociation rate of 10(-5) s(-)(1). Association with Ran is accelerated 3-fold in the presence of RanBP1, which presumably prevents steric hindrance caused by the Ran C-terminus. In addition, we show that the RanBDis of RanBP2 are full equivalents of RanBP1 in that they also costimulate RanGAP-catalyzed GTP hydrolysis in Ran and relieve the GTPase block in a Ran.GTP.transportin complex. Our data suggest that the C-terminus of Ran functions like a loose tether in Ran.GTP complexes of importins or exportins that exit the nucleus. This flag is then recognized by the multiple RanBDis at or near the nuclear pore complex, allowing efficient disassembly of these Ran.GTP complexes.
- Tachibana T, Hieda M, Miyamoto Y, Kose S, Imamoto N, Yoneda Y
- Recycling of importin alpha from the nucleus is suppressed by loss of RCC1 function in living mammalian cells.
- Cell Struct Funct. 2000; 25: 115-23
- Display abstract
We previously reported that the nuclear import of substrates containing SV40 T antigen nuclear localization signal (NLS) was suppressed in a temperature-sensitive RCC1 mutant cell line, tsBN2, at nonpermissive temperature. Moreover, it was shown that import into wild type BHK21 cell-derived nuclei gradually decreased in heterokaryons between the tsBN2 and BHK21 cells, although the BHK21 nuclei retained wild type RCC1 and should contain RanGTP (Tachibana et al., 1994). In this study, it was found that in the heterokaryons cultured at non-permissive temperature, endogenous importin alpha was not detected immunocytochemically in the cytoplasm or BHK21 nuclei but only in the tsBN2 nuclei, suggesting that importin alpha cannot be exported from the RCC1-depleted nuclei. In fact, importin alpha microinjected into the nucleus of tsBN2 cells at non-permissive temperature remained in the nucleus. These results strongly support the hypothesis that the recycling of importin alpha from the nucleus requires nuclear RanGTP. Moreover, it was found that cytoplasmic injection of importin alpha restored the import of SV40 T-NLS substrates in the BHK21 nuclei but not the tsBN2 nuclei in the heterokaryons. This indicates that the decrease of importin alpha from the cytoplasm in the heterokaryons leads to a suppression of the efficiency of nuclear import of the T-NLS substrate and provides support for the view that nuclear RanGTP is essential for the nuclear entry of the substrates.
- Talcott B, Moore MS
- The nuclear import of RCC1 requires a specific nuclear localization sequence receptor, karyopherin alpha3/Qip.
- J Biol Chem. 2000; 275: 10099-104
- Display abstract
RCC1 is the only known guanine nucleotide exchange factor for the small GTPase Ran and is normally found inside the nucleus bound to chromatin. In order to analyze in more detail the nuclear import of RCC1, we created a fusion construct in which four IgG binding domains of protein A were fused to the amino terminus of human RCC1 (pA-RCC1). Surprisingly, we found that neither Xenopus ovarian cytosol nor a mixture of recombinant import factors (karyopherin alpha2, karyopherin beta1, Ran, and p10/NTF2) were able to support the import of pA-RCC1 into the nuclei of digitonin-permeabilized cells. Both, in contrast, were capable of supporting the import of a construct containing another classical nuclear localization sequence (NLS), glutathione S-transferase-green fluorescent protein-NLS. Subsequently, we found that only one of the NLS receptors, karyopherin alpha3 (Kapalpha3/Qip), would support significant nuclear import of pA-RCC1 in permeabilized cells, while members of the other two main classes, Kapalpha1 and Kapalpha2, would not. Accordingly, in vitro binding studies revealed that only Kapalpha3 showed significant binding to RCC1 (unlike Kapalpha1 and Kapalpha2) and that this binding was dependent on the basic amino acids present in the RCC1 NLS. In addition to Kapalpha3, we found that the nuclear import of pA-RCC1 also required both karyopherin beta1 and Ran.
- Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW
- Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation.
- Nature. 1999; 400: 178-81
- Display abstract
Chromosomes are segregated by two antiparallel arrays of microtubules arranged to form the spindle apparatus. During cell division, the nucleation of cytosolic microtubules is prevented and spindle microtubules nucleate from centrosomes (in mitotic animal cells) or around chromosomes (in plants and some meiotic cells). The molecular mechanism by which chromosomes induce local microtubule nucleation in the absence of centrosomes is unknown, but it can be studied by adding chromatin beads to Xenopus egg extracts. The beads nucleate microtubules that eventually reorganize into a bipolar spindle. RCC1, the guanine-nucleotide-exchange factor for the GTPase protein Ran, is a component of chromatin. Using the chromatin bead assay, we show here that the activity of chromosome-associated RCC1 protein is required for spindle formation. Ran itself, when in the GTP-bound state (Ran-GTP), induces microtubule nucleation and spindle-like structures in M-phase extract. We propose that RCC1 generates a high local concentration of Ran-GTP around chromatin which in turn induces the local nucleation of microtubules.
- Nishimoto T
- A new role of ran GTPase.
- Biochem Biophys Res Commun. 1999; 262: 571-4
- Display abstract
Ran is a G protein similar to Ras, but it has no membrane binding site. RanGEF, RCC1, is on chromatin and RanGAP, RanGAP1/Rna1p is in cytoplasm. Ran, thus, shuttles between the nucleus and the cytoplasm to complete its GTPase cycle, carrying out nucleocytoplasmic transport of macromolecules. A majority of Ran binding proteins, thus far found, are required for this process. A recently found novel Ran-binding protein, RanBPM, however, is localized in the centrosome. Subsequently, four groups reported that RanGTP, but not RanGDP, can induce microtubule self-organization in Xenopus egg extracts where no nuclear membrane is present. Thus, Ran is suggested to have a new role beyond the nucleocytoplasmic transport of macromolecules. In both microtubule assembly and nucleocytoplasmic transport, chromosomal localization of RCC1 is important to carry out the functions of RanGTPase. In this regard, a future intriguing question is how RCC1 interacts with chromatin DNA.
- Stewart M, Rhodes D
- Switching affinities in nuclear trafficking.
- Nat Struct Biol. 1999; 6: 301-4
- Yaseen NR, Blobel G
- GTP hydrolysis links initiation and termination of nuclear import on the nucleoporin nup358.
- J Biol Chem. 1999; 274: 26493-502
- Display abstract
Binding of GTP-bound Ran (RanGTP) to karyopherin beta1 (Kapbeta1) releases import cargo into the nucleus. Using an ultrastructural, biochemical, and functional approach, we have studied the mechanism by which Kapbeta1.RanGTP is recycled at the nuclear pore complex for repeated rounds of import. In vitro, Kapbeta1 bound to the RanBP1-homologous (RBH) domains of Nup358 in the presence of either RanGTP or RanGDP, forming trimeric complexes. The Kapbeta1.RanGTP. RBH complex resisted dissociation by RanBP1 and GTP hydrolysis by Ran GTPase activating protein 1. Ran-dependent binding of gold-conjugated Kapbeta1 to the cytoplasmic fibers of the nuclear pore complex in digitonin-permeabilized cells and RanBP1 competition confirmed the in vitro binding data. Interaction of karyopherin alpha and a classical nuclear localization sequence peptide with the Kapbeta1.RanGTP.RBH complex stimulated GTP hydrolysis by Ran GTPase activating protein 1 both in vitro and in permeabilized cells. This GTP hydrolysis was required for reinitiation of import of a nuclear localization sequence-bearing substrate in permeabilized cells. These data suggest that GTP hydrolysis on the RBH domains of Nup358 couples the termination of one cycle of nuclear import with the initiation of the next.
- Kent HM et al.
- Engineered mutants in the switch II loop of Ran define the contribution made by key residues to the interaction with nuclear transport factor 2 (NTF2) and the role of this interaction in nuclear protein import.
- J Mol Biol. 1999; 289: 565-77
- Display abstract
Nuclear protein import requires a precisely choreographed series of interactions between nuclear pore components and soluble factors such as importin-beta, Ran, and nuclear transport factor 2 (NTF2). We used the crystal structure of the GDPRan-NTF2 complex to design mutants in the switch II loop of Ran to probe the contribution of Lys71, Phe72 and Arg76 to this interaction. X-ray crystallography showed that the F72Y, F72W and R76E mutations did not introduce major structural changes into the mutant Ran. The GDP-bound form of the switch II mutants showed no detectable binding to NTF2, providing direct evidence that salt bridges involving Lys71 and Arg76 and burying Phe72 are all crucial for the interaction between Ran and NTF2. Nuclear protein accumulation in digitonin-permeabilzed cells was impaired with Ran mutants deficient in NTF2 binding, confirming that the NTF2-Ran interaction is required for efficient transport. We used mutants of the yeast Ran homologue Gsp1p to investigate the effect of the F72Y and R76E mutations in vivo. Although neither mutant was viable when integrated into the genome as a single copy, yeast mildly overexpressing the Gsp1p mutant corresponding Ran F72Y on a centromeric plasmid were viable, confirming that this mutant retained the essential properties of wild-type Ran. However, yeast expressing the Gsp1p mutant corresponding to R76E to comparable levels were not viable, although strains overexpressing the mutant to higher levels using an episomal 2micrometers plasmid were viable, indicating that the R76E mutation may also have interfered with other interactions made by Gsp1p.
- Geyer M et al.
- Conformational states of the nuclear GTP-binding protein Ran and its complexes with the exchange factor RCC1 and the effector protein RanBP1.
- Biochemistry. 1999; 38: 11250-60
- Display abstract
It has been shown before by (31)P NMR that Ras bound to the nonhydrolyzable GTP analogue guanosine 5'-O-(beta, gamma-imidotriphosphate) (GppNHp) exists in two conformations which are rapidly interconverting with a rate constant of 3200 s-1 at 30 degrees C [Geyer, M., et al. (1996) Biochemistry 35, 10308-10320]. Here we show that Ran complexed with GTP also exists in two conformational states, 1 and 2, which can be directly inferred from the occurrence of two (31)P NMR resonance lines for the gamma-phosphate group of bound GTP. The exchange between the two states is slow on the NMR time scale with a value of <200 s-1 at 5 degrees C for the corresponding first-order rate constants. In wild-type Ran, the equilibrium constant K' between the two states is 0.7 at 278 K, is different for various mutants, and is strongly dependent on the temperature. The standard enthalpy DeltaH degrees and the standard entropy DeltaS degrees for the conformational transitions determined from the NMR spectra are as follows: DeltaH degrees = 37 kJ mol-1 and DeltaS degrees = 130 J mol-1 K-1 for wild-type Ran.GTP. In complex with the Ran-binding protein RanBP1, one of the Ran.GTP conformations (state 2) is stabilized. The interaction of Ran with the guanine nucleotide exchange factor protein RCC1 was also studied by (31)P NMR spectroscopy. In the presence of nucleotide, the ternary complex of Ran.nucleotide.RCC1, an intermediate in the guanine nucleotide exchange reaction, could be observed. A model for the conformational transition of Ran.GTP is proposed where the two states observed are caused by the structural flexibility of the effector loop of Ran; in solution, state 2 resembles the GTP-bound form found in the crystal structure of the Ran-RanBP complex.
- Pennisi E
- Nuclear transport protein does double duty in mitosis.
- Science. 1999; 284: 1260-1
- Chook YM, Blobel G
- Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp.
- Nature. 1999; 399: 230-7
- Display abstract
Transport factors in the karyopherin-beta (also called importin-beta) family mediate the movement of macromolecules in nuclear-cytoplasmic transport pathways. Karyopherin-beta2 (transportin) binds a cognate import substrate and targets it to the nuclear pore complex. In the nucleus, Ran x GTP binds karyopherin-beta2 and dissociates the substrate. Here we present the 3.0 A structure of the karyopherin-beta2-Ran x GppNHp complex where GppNHp is a non-hydrolysable GTP analogue. Karyopherin-beta2 contains eighteen HEAT repeats arranged into two continuous orthogonal arches. Ran is clamped in the amino-terminal arch and substrate-binding activity is mapped to the carboxy-terminal arch. A large loop in HEAT repeat 7 spans both arches. Interactions of the loop with Ran and the C-terminal arch implicate it in GTPase-mediated dissociation of the import-substrate. Ran x GppNHp in the complex shows extensive structural rearrangement, compared to Ran GDP, in regions contacting karyopherin-beta2. This provides a structural basis for the specificity of the karyopherin-beta family for the GTP-bound state of Ran, as well as a rationale for interactions of the karyopherin-Ran complex with the regulatory proteins ranGAP, ranGEF and ranBP1.
- Hieda M, Tachibana T, Yokoya F, Kose S, Imamoto N, Yoneda Y
- A monoclonal antibody to the COOH-terminal acidic portion of Ran inhibits both the recycling of Ran and nuclear protein import in living cells.
- J Cell Biol. 1999; 144: 645-55
- Display abstract
A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.
- Pemberton LF, Rosenblum JS, Blobel G
- Nuclear import of the TATA-binding protein: mediation by the karyopherin Kap114p and a possible mechanism for intranuclear targeting.
- J Cell Biol. 1999; 145: 1407-17
- Display abstract
Binding of the TATA-binding protein (TBP) to the promoter is the first and rate limiting step in the formation of transcriptional complexes. We show here that nuclear import of TBP is mediated by a new karyopherin (Kap) (importin) family member, Kap114p. Kap114p is localized to the cytoplasm and nucleus. A complex of Kap114p and TBP was detected in the cytosol and could be reconstituted using recombinant proteins, suggesting that the interaction was direct. Deletion of the KAP114 gene led to specific mislocalization of TBP to the cytoplasm. We also describe two other potential minor import pathways for TBP. Consistent with other Kaps, the dissociation of TBP from Kap114p is dependent on RanGTP. However, we could show that double stranded, TATA-containing DNA stimulates this RanGTP-mediated dissociation of TBP, and is necessary at lower RanGTP concentrations. This suggests a mechanism where, once in the nucleus, TBP is preferentially released from Kap114p at the promoter of genes to be transcribed. In this fashion Kap114p may play a role in the intranuclear targeting of TBP.
- Kalab P, Pu RT, Dasso M
- The ran GTPase regulates mitotic spindle assembly.
- Curr Biol. 1999; 9: 481-4
- Display abstract
Ran is an abundant nuclear GTPase with a clear role in nuclear transport during interphase but with roles in mitotic regulation that are less well understood. The nucleotide-binding state of Ran is regulated by a GTPase activating protein, RanGAP1, and by a guanine nucleotide exchange factor, RCC1. Ran also interacts with a guanine nucleotide dissociation inhibitor, RanBP1. RanBP1 has a high affinity for GTP-bound Ran, and it acts as a cofactor for RanGAP1, increasing the rate of GAP-mediated GTP hydrolysis on Ran approximately tenfold. RanBP1 levels oscillate during the cell cycle [4], and increased concentrations of RanBP1 prolong mitosis in mammalian cells and in Xenopus egg extracts (our unpublished observations). We investigated how increased concentrations of RanBP1 disturb mitosis. We found that spindle assembly is dramatically disrupted when exogenous RanBP1 is added to M phase Xenopus egg extracts. We present evidence that the role of Ran in spindle assembly is independent of nuclear transport and is probably mediated through changes in microtubule dynamics.
- Englmeier L, Olivo JC, Mattaj IW
- Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis.
- Curr Biol. 1999; 9: 30-41
- Display abstract
BACKGROUND: The transport of macromolecules between the nucleus and cytoplasm is an energy-dependent process. Substrates are translocated across the nuclear envelope through nuclear pore complexes (NPCs). Translocation requires nucleocytoplasmic transport receptors of the importin beta family, which interact both with the NPC and, either directly or via an adaptor, with the transport substrate. Although certain receptors have recently been shown to cross the NPC in an energy-independent manner, translocation of substrate-receptor complexes through the NPC has generally been regarded as an energy-requiring step. RESULTS: We describe an in vitro system that is based on permeabilised cells and supports nuclear export mediated by leucine-rich nuclear export signals. In this system, export is dependent on exogenous CRM1/Exportin1 - a nuclear export receptor - the GTPase Ran and nucleotide triphosphates (NTPs), and is further stimulated by Ran-binding protein 1 (RanBP1) and nuclear transport factor 2 (NTF2). Unexpectedly, non-hydrolysable NTP analogues completely satisfy the NTP requirements for a single-round of CRM1-mediated translocation of protein substrates across the NPC. Similarly, single transportin-mediated nuclear protein import events are shown not to require hydrolysable NTPs and to occur in the absence of the Ran GTPase. CONCLUSIONS: Our data show that, contrary to expectation and prior conclusions, the translocation of substrate-receptor complexes across the NPC in either direction occurs in the absence of NTP hydrolysis and is thus energy independent. The energy needed to drive substrate transport against a concentration gradient is supplied at the step of receptor recycling in the cytoplasm.
- Ribbeck K, Kutay U, Paraskeva E, Gorlich D
- The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy.
- Curr Biol. 1999; 9: 47-50
- Display abstract
Active transport between nucleus and cytoplasm proceeds through nuclear pore complexes (NPCs) and is mediated largely by shuttling transport receptors that use direct RanGTP binding to coordinate loading and unloading of cargo [1] [2] [3] [4]. Import receptors such as importin beta or transportin bind their substrates at low RanGTP levels in the cytoplasm and release them upon encountering RanGTP in the nucleus, where a high RanGTP concentration is predicted. This substrate release is, in the case of import by the importin alpha/beta heterodimer, coupled directly to importin beta release from the NPCs. If the importin beta -RanGTP interaction is prevented, import intermediates arrest at the nuclear side of the NPCs [5] [6]. This arrest makes it difficult to probe directly the Ran and energy requirements of the actual translocation from the cytoplasmic to the nuclear side of the NPC, which immediately precedes substrate release. Here, we have shown that in the case of transportin, dissociation of transportin-substrate complexes is uncoupled from transportin release from NPCs. This allowed us to dissect the requirements of translocation through the NPC, substrate release and transportin recycling. Surprisingly, translocation of transportin-substrate complexes into the nucleus requires neither Ran nor nucleoside triphosphates (NTPs). It is only nuclear RanGTP, not GTP hydrolysis, that is needed for dissociation of transportin-substrate complexes and for re-export of transportin to the cytoplasm. GTP hydrolysis is apparently required only to restore the import competence of the re-exported transportin and, thus, for multiple rounds of transportin-dependent import. In addition, we provide evidence that at least one type of substrate can also complete NPC passage mediated by importin beta independently of Ran and energy.
- Ohba T, Nakamura M, Nishitani H, Nishimoto T
- Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran.
- Science. 1999; 284: 1356-8
- Display abstract
The nucleotide exchange activity of RCC1, the only known nucleotide exchange factor for Ran, a Ras-like small guanosine triphosphatase, was required for microtubule aster formation with or without demembranated sperm in Xenopus egg extracts arrested in meiosis II. Consistently, in the RCC1-depleted egg extracts, Ran guanosine triphosphate (RanGTP), but not Ran guanosine diphosphate (RanGDP), induced self-organization of microtubule asters, and the process required the activity of dynein. Thus, Ran was shown to regulate formation of the microtubule network.
- Wilde A, Zheng Y
- Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran.
- Science. 1999; 284: 1359-62
- Display abstract
Ran, a small guanosine triphosphatase, is suggested to have additional functions beyond its well-characterized role in nuclear trafficking. Guanosine triphosphate-bound Ran, but not guanosine diphosphate-bound Ran, stimulated polymerization of astral microtubules from centrosomes assembled on Xenopus sperm. Moreover, a Ran allele with a mutation in the effector domain (RanL43E) induced the formation of microtubule asters and spindle assembly, in the absence of sperm nuclei, in a gammaTuRC (gamma-tubulin ring complex)- and XMAP215 (Xenopus microtubule associated protein)-dependent manner. Therefore, Ran could be a key signaling molecule regulating microtubule polymerization during mitosis.
- Kahana JA, Cleveland DW
- Beyond nuclear transport. Ran-GTP as a determinant of spindle assembly.
- J Cell Biol. 1999; 146: 1205-10
- Bogerd HP, Benson RE, Truant R, Herold A, Phingbodhipakkiya M, Cullen BR
- Definition of a consensus transportin-specific nucleocytoplasmic transport signal.
- J Biol Chem. 1999; 274: 9771-7
- Display abstract
The low cytoplasmic and high nuclear concentration of the GTP-bound form of Ran provides directionality for both nuclear protein import and export. Both import and export factors bind RanGTP directly, yet this interaction produces opposite effects; in the former case, RanGTP binding induces nuclear cargo release, whereas in the latter, RanGTP binding induces nuclear cargo assembly. Therefore, nuclear import and export receptors and their protein recognition sites are predicted to be distinct. Nevertheless, the approximately 38-amino acid M9 sequence present in heterogeneous nuclear ribonucleoprotein A1 has been reported to serve as both a nuclear localization signal and a nuclear export signal, even though only one protein, the nuclear import factor transportin, has been shown to bind M9 directly. We have used a combination of mutational randomization followed by selection for transportin binding to exhaustively define amino acids in M9 that are critical for transportin binding in vivo. As expected, the resultant approximately 12-amino acid transportin-binding consensus sequence is also predictive of nuclear localization signal activity. Surprisingly, however, this extensive mutational analysis failed to dissect M9 nuclear localization signal and nuclear export signal function. Nevertheless, transportin appears unlikely to be the M9 export receptor, as RanGTP can be shown to block M9 binding by transportin not only in vitro, but also in the nucleus in vivo. This analysis therefore predicts the existence of a nuclear export receptor distinct from transportin that nevertheless shares a common protein-binding site on heterogeneous nuclear ribonucleoprotein A1.
- Kohler M, Haller H, Hartmann E
- Nuclear protein transport pathways.
- Exp Nephrol. 1999; 7: 290-4
- Display abstract
Nuclear proteins like transcription factors and ribosomal proteins are synthesized in the cytoplasm and have to be transported into the nucleus to fulfill their functions. The transport of proteins >20-60 kD through the nuclear pore complex (NPC) into the nucleus is an active, energy-requiring process. Transport substrates are recognized by their transport proteins via certain signals. The best-characterized protein import pathway is the 'classical' nuclear localization signal-dependent pathway with importin alpha and beta carrying the substrate to the NPC. The transport of the importin-substrate complex into the nucleus is regulated by the small GTPase Ran/TC4. During the last years more than ten proteins have been discovered which have already been proven or are very likely to be nuclear transport factors of distinct import pathways: members of the importin alpha protein family are very similar and transport in complex with importin beta nuclear localization signal-bearing proteins into the nucleus. Members of the Ran-binding protein family show some weak similarity to importin beta. Sharing a common domain at the amino terminus, they are able to bind RanGTP, a prerequisite for their function as nuclear import or export factors for distinct proteins or RNAs. However, Ran/TC4 seems to play a key regulatory role in all nuclear transport pathways described so far, although the molecular mechanism of the translocation step through the NPC is still unclear.
- Miyamoto Y, Yoneda Y
- [Molecular mechanisms of nucleocytoplasmic transport of proteins]
- Tanpakushitsu Kakusan Koso. 1999; 44: 1860-8
- Ohno M
- [Nuclear export of proteins and RNAs]
- Tanpakushitsu Kakusan Koso. 1999; 44: 1877-85
- Smith HM, Raikhel NV
- Protein targeting to the nuclear pore. What can we learn from plants?
- Plant Physiol. 1999; 119: 1157-64
- Ossareh-Nazari B, Dargemont C
- Domains of Crm1 involved in the formation of the Crm1, RanGTP, and leucine-rich nuclear export sequences trimeric complex.
- Exp Cell Res. 1999; 252: 236-41
- Display abstract
Nuclear export of proteins containing a leucine-rich nuclear export sequence (NES) is mediated by a specific NES receptor known as Crm1. This protein, which is related to the karyopherin beta family, interacts directly with NES in a RanGTP-dependent manner. To characterize the domains of Crm1 involved in formation of the trimeric Crm1-NES-RanGTP complex, N- and C-terminal deletion mutants of Crm1 were generated and their ability to bind NES and RanGTP in vitro was analyzed. Our results indicate that two regions of Crm1 are required for the formation of the trimeric Crm1-NES-RanGTP complex, the N-terminal domain of Crm1 and the central domain of the receptor, starting after residue 160 with an essential region between 566 and 720. The N-terminal domain is homologous to the RanGTP-binding domain of karyopherin beta and therefore is likely involved in the interaction with RanGTP. Consequently, the central domain likely corresponds to the NES-binding site of Crm1.
- Moore MS
- Ran and nuclear transport.
- J Biol Chem. 1998; 273: 22857-60
- Dahlberg JE, Lund E
- Functions of the GTPase Ran in RNA export from the nucleus.
- Curr Opin Cell Biol. 1998; 10: 400-8
- Display abstract
Significant and exciting advances in the field of RNA and protein export have been made recently, due in large part to discovery of the roles played by Ran, a small, soluble GTPase present in both the nucleus and cytoplasm of all eukaryotic cells. Ran is thought to be primarily bound to GTP in the nucleus and to GDP in the cytoplasm, as a result of the assymetric distribution of factors that interact with Ran to promote guanine nucleotide exchange (in the nucleus) and GTP hydrolysis (in the cytoplasm). A key function of the nuclear Ran.GTP is to support formation of complexes containing an export receptor (an exportin) and cargos such as RNAs, RNPs or proteins that are destined for export. In the cytoplasm, removal of the Ran.GTP from the complex results in its destabilization and release of the export cargo. Although Ran.GTP is required for formation of the export complex, GTP hydrolysis does not appear to be necessary for translocation through the nuclear pore complex or cytoplasmic release. Nevertheless, the GTPase of Ran does appear to be required in as yet unidentified intranuclear steps prior to export of some, but not all, RNAs.
- Nakielny S, Dreyfuss G
- Import and export of the nuclear protein import receptor transportin by a mechanism independent of GTP hydrolysis.
- Curr Biol. 1998; 8: 89-95
- Display abstract
BACKGROUND: Nuclear protein import and export are mediated by receptor proteins that recognize nuclear localization sequences (NLSs) or nuclear export sequences (NESs) and target the NLS-bearing or NES-bearing protein to the nuclear pore complex (NPC). Temperature-dependent translocation of the receptor-cargo complex in both directions through the NPC requires the GTPase Ran, and it has been proposed that the Ran GTPase cycle mediates translocation. We have addressed the role of GTP hydrolysis in these processes by studying the import receptor transportin, which mediates the import of a group of abundant heterogeneous nuclear RNA-binding proteins bearing the M9 NLS. RESULTS: We investigated the transport properties of transportin and found that the carboxy-terminal region of transportin could, by itself, be imported into the nucleus. Transportin import and export were inhibited by low temperature in vitro, but were unaffected by the non-hydrolyzable GTP analogue GMP-PNP. CONCLUSIONS: Temperature-dependent import and export through the NPC can be uncoupled from the Ran GTPase cycle and can occur without GTP hydrolysis.
- Solsbacher J, Maurer P, Bischoff FR, Schlenstedt G
- Cse1p is involved in export of yeast importin alpha from the nucleus.
- Mol Cell Biol. 1998; 18: 6805-15
- Display abstract
Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin alpha binds to the NLS and to importin beta, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin beta. The importin subunits are exported separately. We investigated the role of Cse1p, the Saccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin alpha). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin beta accumulated in nuclei of cse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.
- Pennisi E
- The nucleus's revolving door.
- Science. 1998; 279: 1129-31
- Smith A, Brownawell A, Macara IG
- Nuclear import of Ran is mediated by the transport factor NTF2.
- Curr Biol. 1998; 8: 1403-6
- Display abstract
A concentration gradient of the GTP-bound form of the GTPase Ran across nuclear pores is essential for the transport of many proteins and nucleic acids between the nuclear and cytoplasmic compartments of eukaryotic cells [1] [2] [3] [4]. The mechanisms responsible for the dynamics and maintenance of this Ran gradient have been unclear. We now show that Ran shuttles between the nucleosol and cytosol, and that cytosolic Ran accumulates rapidly in the nucleus in a saturable manner that is dependent on temperature and on the guanine-nucleotide exchange factor RCC1. Nuclear import in digitonin-permeabilized cells in the absence of added factors was minimal. The addition of energy and nuclear transport factor 2 (NTF2) [5] was sufficient for the accumulation of Ran in the nucleus. An NTF2 mutant that cannot bind Ran [6] was unable to facilitate Ran import. A GTP-bound form of a Ran mutant that cannot bind NTF2 was not a substrate for import. A dominant-negative importin-beta mutant inhibited nuclear import of Ran, whereas addition of transportin, which accumulates in the nucleus, enhanced NTF2-dependent Ran import. We conclude that NTF2 functions as a transport receptor for Ran, permitting rapid entry into the nucleus where GTP-GDP exchange mediated by RCC1 [7] converts Ran into its GTP-bound state. The Ran-GTP can associate with nuclear Ran-binding proteins, thereby creating a Ran gradient across nuclear pores.
- Schwoebel ED, Talcott B, Cushman I, Moore MS
- Ran-dependent signal-mediated nuclear import does not require GTP hydrolysis by Ran.
- J Biol Chem. 1998; 273: 35170-5
- Display abstract
Nuclear import of classical nuclear localization sequence-containing proteins involves the assembly of an import complex at the cytoplasmic face of the nuclear pore complex (NPC) followed by movement of this complex through the NPC and release of the import substrate into the nuclear interior. This process has historically been thought to require nucleotide hydrolysis as a source of energy. We found, using hydrolysis-resistant GTP analogs and a mutant Ran unable to hydrolyze GTP, that transport of classical nuclear localization sequence containing substrate through the NPC and release of the substrate into the nucleus did not require hydrolysis of GTP by Ran. In fact, for movement of this type of import substrate into the nuclear interior we did not observe a requirement for hydrolysis of any nucleotide triphosphate. We did, however, find that a pool of free GTP (or its structural equivalent) must be added, probably because the GDP Ran that is added must be converted to GTP Ran during the import process. We found that a requirement for GTP hydrolysis can be restored to an import mixture consisting of recombinant import factors by the addition of RCC1, the Ran guanine nucleotide exchange factor.
- Tyagi RK, Amazit L, Lescop P, Milgrom E, Guiochon-Mantel A
- Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate.
- Mol Endocrinol. 1998; 12: 1684-95
- Display abstract
Steroid hormone receptors are, in most cases, mainly nuclear proteins that undergo a continuous nucleocytoplasmic shuttling. The mechanism of the nuclear export of these proteins remains largely unknown. To approach this problem experimentally in vivo, we have prepared cell lines permanently coexpressing the wild-type nuclear progesterone receptor (PR) and a cytoplasmic receptor mutant deleted of its nuclear localization signal (NLS) [(deltaNLS)PR]. Each receptor species was deleted from the epitope recognized by a specific monoclonal antibody, thus allowing separated observation of the two receptor forms in the same cells. Administration of hormone provoked formation of heterodimers during nucleocytoplasmic shuttling and import of (deltaNLS)PR into the nucleus. Washing out of the hormone allowed us to follow the export of (deltaNLS)PR into the cytoplasm. Microinjection of BSA coupled to a NLS inhibited the export of (deltaNLS)PR. On the contrary, microinjection of BSA coupled to a nuclear export signal (NES) was without effect. Moreover, leptomycin B, which inhibits NES-mediated export, was also without effect. tsBN2 cells contain a thermosensitive RCC1 protein (Ran GTP exchange protein). At the nonpermissive temperature, the nuclear export of (deltaNLS)PR could be observed, whereas the export of NES-BSA was suppressed. Microinjection of GTPgammaS confirmed that the export of (deltaNLS)PR was not dependent on GTP hydrolysis. These experiments show that the nuclear export of PR is not NES mediated but probably involves the NLS. It does not involve Ran GTP, and it is not dependent on the hydrolysis of GTP. The nucleocytoplasmic shuttling of steroid hormone receptors thus appears to utilize mechanisms different from those previously described for some viral, regulatory, and heterogeneous ribonuclear proteins.
- Nieland JD et al.
- Functional analysis of Ran/TC4 as a protein regulating T-cell costimulation.
- Cancer Gene Ther. 1998; 5: 259-73
- Display abstract
Antigen (Ag)-triggered activation of T cells requires engagement of both the T-cell Ag receptor and a costimulatory receptor, for which CD28 can function as a prototypical example. CD80 and CD86 represent ligands for this receptor, and although they are present on professional Ag-presenting cells, these molecules are absent from most tumors. Yet some tumors are still able to costimulate a T-cell response, while others cannot. Therefore, a key question concerns the molecular basis for the costimulation of T cells by those tumor cells not expressing the CD28 ligands CD80 and CD86. Upon screening a cDNA library of such a tumor cell line in a transient COS cell transfection assay for costimulatory activity, we identified Ran/TC4 as a protein whose overexpression results in costimulatory activity. Ran/TC4 is a ubiquitously expressed member of the Ras gene superfamily of small guanosine triphosphate-binding proteins and is involved in nuclear transport; Ran/TC4 cDNA-transfected COS cells specifically costimulate CD8 T cells and not CD4 T cells. Transfection of Ran/TC4 into the costimulation-deficient murine RMA lymphoma cell line introduced costimulatory capacity for CD8 T cells and resulted in markedly elevated levels of nuclear Ran/TC4 protein expression. In addition, in vivo priming of mice with Ran/TC4-transfected RMA cells induced protection against wild-type (wt) RMA tumor cells. Ran/TC4-transfected RMA cells and wt RMA tumor cells exhibit comparable in vivo growth rates in mice lacking T and B cells, and Ran/TC4-mediated tumor rejection thus involves B and/or T cells. This possibility is substantiated by the observation that T cells from normal mice challenged with Ran/TC4-transfected RMA cells can mount a cytotoxic T-cell response not only against the Ran/TC4-transfected tumor cells but also against wt RMA tumor cells. Based on these results, we conclude that gene transfer-mediated elevations in Ran/TC4 can confer costimulatory function for CD8 T cells to tumor cells. This finding suggests a novel application of Ran/TC4 as a protein capable of regulating costimulation in tumor cells.
- Izaurralde E, Adam S
- Transport of macromolecules between the nucleus and the cytoplasm.
- RNA. 1998; 4: 351-64
- Display abstract
Nuclear transport is an energy-dependent process mediated by saturable receptors. Import and export receptors are thought to recognize and bind to nuclear localization signals or nuclear export signals, respectively, in the transported molecules. The receptor-substrate interaction can be direct or mediated by an additional adapter protein. The transport receptors dock their cargoes to the nuclear pore complexes (NPC) and facilitate their translocation through the NPC. After delivering their cargoes, the receptors are recycled to initiate additional rounds of transport. Because a transport event for a cargo molecule is unidirectional, the transport receptors engage in asymmetric cycles of translocation across the NPC. The GTPase Ran acts as a molecular switch for receptor-cargo interaction and imparts directionality to the transport process. Recently, the combined use of different in vitro and in vivo approaches has led to the characterization of novel import and export signals and to the identification of the first nuclear import and export receptors.
- Stewart M, Kent HM, McCoy AJ
- Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran.
- J Mol Biol. 1998; 277: 635-46
- Display abstract
Nuclear transport factor 2 (NTF2) and the Ras-family GTPase Ran are two soluble components of the nuclear protein import machinery. NTF2 binds GDP-Ran selectively and this interaction is important for efficient nuclear protein import in vivo. We have used X-ray crystallography to determine the structure of the macromolecular complex formed between GDP-Ran and nuclear transport factor 2 (NTF2) at 2.5 A resolution. The interaction interface involves primarily the putative switch II loop of Ran (residues 65 to 78) and the hydrophobic cavity and surrounding surface of NTF2. The major contribution to the interaction made by the switch II loop accounts for the ability of NTF2 to discriminate between GDP and GTP-bound forms of Ran. The aromatic side-chain of Ran Phe72 inserts into the NTF2 cavity and accounts for 22% of the surface area buried by the interaction interface, while salt bridges are formed between Lys71 and Arg76 of Ran with Asp92/Asp94 and Glu42 of NTF2, respectively. These salt bridges account for the inhibition of the Ran-NTF2 interaction by NTF2 mutants such as E42 K and D92/94N in which the negatively charged residues surrounding the cavity were altered. Because the interaction interface maintains the positions of key Ran residues involved in binding MgGDP, NTF2 binding may help stabilize the switch state of Ran, possibly in the context of targeting it to other components of the nuclear protein import machinery to specify directionality of transport. The binding of GDP-Ran at the NTF2 cavity raises the possibility that this interaction might be modulated by a metabolite or small molecule substrate for NTF2's putative enzymatic activity.
- Ouspenski II
- A RanBP1 mutation which does not visibly affect nuclear import may reveal additional functions of the ran GTPase system.
- Exp Cell Res. 1998; 244: 171-83
- Display abstract
Ran, a nuclear GTPase, and a number of interacting proteins, including regulators RanGEF1 and RanGAP1, are involved in nucleocytoplasmic transport. We have identified a new temperature-sensitive mutation in budding yeast YRB1 gene, which encodes Ran-binding protein-1 (RanBP1). In contrast to other yrb1 alleles, the new mutation (yrb1-21) does not cause visible defects in import of nuclear proteins Npl3p, histone H2B, or beta-galactosidase fused to a nuclear localization signal. We hypothesize that the inviability of mutant cells at the restrictive temperature is caused by an additional essential function of RanBP1 other than nuclear import. This function may be revealed by the terminal phenotypes of yrb1-21, which include failure of the mitotic spindles to properly align along the mother-bud axis and accumulation of cells in late mitosis or G1 phase of the cell cycle. These features are shared, in part, by a mutation in RanGEF1, but not in RanGAP1. The yrb1-21 allele suppresses a RanGEF1 mutation, indicating that RanGEF1 and RanBP1 may be involved in the same essential function.
- Yan C, Lee LH, Davis LI
- Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor.
- EMBO J. 1998; 17: 7416-29
- Display abstract
The yeast AP-1-like transcription factor, Yap1p, activates genes required for the response to oxidative stress. Yap1p is normally cytoplasmic and inactive, but will activate by nuclear translocation if cells are placed in an oxidative environment. Here we show that Yap1p is a target of the beta-karyopherin-like nuclear exporter, Crm1p. Yap1p is constitutively nuclear in a crm1 mutant, and Crm1p binds to a nuclear export sequence (NES)-like sequence in Yap1p in the presence of RanGTP. Recognition of Yap1p by Crm1p is inhibited by oxidation, and this inhibition requires at least one of the three cysteine residues flanking the NES. These results suggest that Yap1p localization is largely regulated at the level of nuclear export, and that the oxidation state affects the accessibility of the Yap1p NES to Crm1p directly. We also show that a mutation in RanGAP (rna1-1) is synthetically lethal with crm1 mutants. Yap1p export is inhibited in both rna1-1 and prp20 (RanGNRF) mutant strains, but Yap1p rapidly accumulates at the nuclear periphery after shifting rna1-1, but not other mutant cells to the non-permissive temperature. Thus, disassembly of export complexes in response to RanGTP hydrolysis may be required for release of substrate from a terminal binding site at the nuclear pore complex (NPC).
- Jenkins Y, McEntee M, Weis K, Greene WC
- Characterization of HIV-1 vpr nuclear import: analysis of signals and pathways.
- J Cell Biol. 1998; 143: 875-85
- Display abstract
While the Vpr protein of HIV-1 has been implicated in import of the viral preintegration complex across the nuclear pore complex (NPC) of nondividing cellular hosts, the mechanism by which Vpr enters the nucleus remains unknown. We now demonstrate that Vpr contains two discrete nuclear targeting signals that use two different import pathways, both of which are distinct from the classical nuclear localization signal (NLS)- and the M9-dependent pathways. Vpr import does not appear to require Ran-mediated GTP hydrolysis and persists under conditions of low energy. Competition experiments further suggest that Vpr directly engages the NPC at two discrete sites. These sites appear to form distal components of a common import pathway used by NLS- and M9-containing proteins. Together, our data suggest that Vpr bypasses many of the soluble receptors involved in import of cellular cargoes. Rather, this viral protein appears to directly access the NPC, a property that may help to ensure the capacity of HIV to replicate in nondividing cellular hosts.
- Arts GJ, Kuersten S, Romby P, Ehresmann B, Mattaj IW
- The role of exportin-t in selective nuclear export of mature tRNAs.
- EMBO J. 1998; 17: 7430-41
- Display abstract
Exportin-t (Xpo-t) is a vertebrate nuclear export receptor for tRNAs that binds tRNA cooperatively with GTP-loaded Ran. Xpo-t antibodies are shown to efficiently block tRNA export from Xenopus oocyte nuclei suggesting that it is responsible for at least the majority of tRNA export in these cells. We examine the mechanism by which Xpo-t-RanGTP specifically exports mature tRNAs rather than other forms of nuclear RNA, including tRNA precursors. Chemical and enzymatic footprinting together with phosphate modification interference reveals an extensive interaction between the backbone of the TPsiC and acceptor arms of tRNAPhe and Xpo-t-RanGTP. Analysis of mutant or precursor tRNA forms demonstrates that, aside from these recognition elements, accurate 5' and 3' end-processing of tRNA affects Xpo-t-RanGTP interaction and nuclear export, while aminoacylation is not essential. Intron-containing, end-processed, pre-tRNAs can be bound by Xpo-t-RanGTP and are rapidly exported from the nucleus if Xpo-t is present in excess. These results suggest that at least two mechanisms are involved in discrimination of pre-tRNAs and mature tRNAs prior to nuclear export.
- Ribbeck K, Lipowsky G, Kent HM, Stewart M, Gorlich D
- NTF2 mediates nuclear import of Ran.
- EMBO J. 1998; 17: 6587-98
- Display abstract
Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor.
- Stewart M, Kent HM, McCoy AJ
- The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2).
- J Mol Biol. 1998; 284: 1517-27
- Display abstract
We report the 2.3 A resolution X-ray crystal structure of the GDP-bound form of the RanQ69L mutant that is used extensively in studies of nucleocytoplasmic transport and cell-cycle progression. When the structure of GDP-RanQ69L from monoclinic crystals with P21 symmetry was compared with the structure of wild-type Ran obtained from monoclinic crystals, the Q69L mutant showed a large conformational change in residues 68-74, which are in the switch II region of the molecule which changes conformation in response to nucleotide state and which forms the major interaction interface with nuclear transport factor 2 (NTF2, sometimes called p10). This conformational change alters the positions of key residues such as Lys71, Phe72 and Arg76 that are crucial for the interaction of GDP-Ran with NTF2 and indeed, solution binding studies were unable to detect any interaction between NTF2 and GDP-RanQ69L under conditions where GDP-Ran bound effectively. This interaction between NTF2 and GDP-Ran is required for efficient nuclear protein import and may function between the docking and translocation steps of the pathway.
- Cole CN, Hammell CM
- Nucleocytoplasmic transport: driving and directing transport.
- Curr Biol. 1998; 8: 36872-36872
- Display abstract
Nucleocytoplasmic transport involves assembly and movement across the nuclear envelope of cargo-receptor complexes that interact with the small GTPase Ran. The asymmetric distribution of Ran regulator proteins, RanGAP1 and RCC1, provides the driving force and directionality for nuclear transport.
- Albertini M, Pemberton LF, Rosenblum JS, Blobel G
- A novel nuclear import pathway for the transcription factor TFIIS.
- J Cell Biol. 1998; 143: 1447-55
- Display abstract
We have identified a novel pathway for protein import into the nucleus. We have shown that the previously identified but uncharacterized yeast protein Nmd5p functions as a karyopherin. It was therefore designated Kap119p (karyopherin with Mr of 119 kD). We localized Kap119p to both the nucleus and the cytoplasm. We identified the transcription elongation factor TFIIS as its major cognate import substrate. The cytoplasmic Kap119p exists as an approximately stoichiometric complex with TFIIS. RanGTP, not RanGDP, dissociated the isolated Kap119p/TFIIS complex and bound to Kap119p. Kap119p also bound directly to a number of peptide repeat containing nucleoporins in overlay assays. In wild-type cells, TFIIS was primarily localized to the nucleus. In a strain where KAP119 has been deleted, TFIIS was mislocalized to the cytoplasm indicating that TFIIS is imported into the nucleus by Kap119p. The transport of various substrates that use other karyopherin-mediated import or export pathways was not affected in a kap119Delta strain. Hence Kap119p is a novel karyopherin that is responsible for the import of the transcription elongation factor TFIIS.
- Yamada M, Tachibana T, Imamoto N, Yoneda Y
- Nuclear transport factor p10/NTF2 functions as a Ran-GDP dissociation inhibitor (Ran-GDI).
- Curr Biol. 1998; 8: 1339-42
- Display abstract
The cytosolic nuclear transport factor p10/NTF2 is required for the translocation of karyophilic molecules through nuclear pores [1] [2] [3], and the small GTPase Ran is a key regulator of protein transport between the nucleus and cytoplasm [4] [5]. It has been reported that p10/NTF2 interacts directly and specifically with Ran-GDP but not with Ran-GTP [6]. The precise role(s) of p10/NTF2 in the Ran GTP/GDP cycle are thus far unclear, however. In this study, we show that mammalian p10/NTF2 dramatically inhibits the dissociation of [3H]GDP from Ran and the binding of [35S]GTPgammaS to Ran following the dissociation of non-radioactive GDP by RCC1, the only known mammalian guanine nucleotide exchange factor for Ran (Ran-GEF) [7]. In contrast, the dissociation of [35S]GTP gamma S from Ran, which was also catalyzed by RCC1, was not affected by p10/NTF2. Furthermore, the activities of wild-type p10/NTF2 and the mutant forms M84T and D92G in an assay of nuclear protein import in a digitonin-permeabilized cell-free system correlated with their level of inhibition of the dissociation of nucleotide from Ran-GDP. These results suggest that p10/NTF2 acts as a GDP dissociation inhibitor for Ran (Ran-GDI), thereby coordinating the Ran-dependent reactions that underlie nuclear protein import.
- Wong DH, Corbett AH, Kent HM, Stewart M, Silver PA
- Interaction between the small GTPase Ran/Gsp1p and Ntf2p is required for nuclear transport.
- Mol Cell Biol. 1997; 17: 3755-67
- Display abstract
Bidirectional movement of proteins and RNAs across the nuclear envelope requires Ran, a Ras-like GTPase. A genetic screen of the yeast Saccharomyces cerevisiae was performed to isolate conditional alleles of GSP1, a gene that encodes a homolog of Ran. Two temperature-sensitive alleles, gsp1-1 and gsp1-2, were isolated. The mutations in these two alleles map to regions that are structurally conserved between different members of the Ras family. Each mutant strain exhibits various nuclear transport defects. Both biochemical and genetic experiments indicate a decreased interaction between Ntf2p, a factor which is required for protein import, and the mutant GSP1 gene products. Overexpression of NTF2 can suppress the temperature sensitive phenotype of gsp1-1 and gsp1-2 and partially rescue nuclear transport defects. However, overexpression of a mutant allele of NTF2 with decreased binding to Gsp1p cannot rescue the temperature sensitivity of gsp1-1 and gsp1-2. Taken together, these data demonstrate that the interaction between Gsp1p and Ntf2p is critical for nuclear transport.
- Chi NC, Adam SA
- Functional domains in nuclear import factor p97 for binding the nuclear localization sequence receptor and the nuclear pore.
- Mol Biol Cell. 1997; 8: 945-56
- Display abstract
The interaction of the nuclear protein import factor p97 with the nuclear localization sequence (NLS) receptor, the nuclear pore complex, and Ran/TC4 is important for coordinating the events of protein import to the nucleus. We have mapped the binding domains on p97 for the NLS receptor and the nuclear pore. The NLS receptor-binding domain of p97 maps to the C-terminal 60% of the protein between residues 356 and 876. The pore complex-binding domain of p97 maps to residues 152-352. The pore complex-binding domain overlaps the Ran-GTP- and Ran-GDP-binding domains on p97, but only Ran-GTP competes for docking in permeabilized cells. The N-ethylmaleimide sensitivity of the p97 for docking was investigated and found to be due to inhibition of p97 binding to the pore complex and to the NLS receptor. Site-directed mutagenesis of conserved cysteine residues in the pore- and receptor-binding domains identified two cysteines, C223 and C228, that were required for p97 to bind the nuclear pore. Inhibition studies on docking and accumulation of a NLS protein provided additional evidence that the domains identified biochemically are the functional domains involved in protein import. Together, these results suggest that Ran-GTP dissociates the receptor complex and prevents p97 binding to the pore by inducing a conformational change in the structure of p97 rather than simple competition for binding sites.
- Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Gorlich D
- The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus.
- EMBO J. 1997; 16: 6535-47
- Display abstract
The GTPase Ran is essential for nuclear import of proteins with a classical nuclear localization signal (NLS). Ran's nucleotide-bound state is determined by the chromatin-bound exchange factor RCC1 generating RanGTP in the nucleus and the cytoplasmic GTPase activating protein RanGAP1 depleting RanGTP from the cytoplasm. This predicts a steep RanGTP concentration gradient across the nuclear envelope. RanGTP binding to importin-beta has previously been shown to release importin-alpha from -beta during NLS import. We show that RanGTP also induces release of the M9 signal from the second identified import receptor, transportin. The role of RanGTP distribution is further studied using three methods to collapse the RanGTP gradient. Nuclear injection of either RanGAP1, the RanGTP binding protein RanBP1 or a Ran mutant that cannot stably bind GTP. These treatments block major export and import pathways across the nuclear envelope. Different export pathways exhibit distinct sensitivities to RanGTP depletion, but all are more readily inhibited than is import of either NLS or M9 proteins, indicating that the block of export is direct rather than a secondary consequence of import inhibition. Surprisingly, nuclear export of several substrates including importin-alpha and -beta, transportin, HIV Rev and tRNA appears to require nuclear RanGTP but may not require GTP hydrolysis by Ran, suggesting that the energy for their nuclear export is supplied by another source.
- Kutay U, Izaurralde E, Bischoff FR, Mattaj IW, Gorlich D
- Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex.
- EMBO J. 1997; 16: 1153-63
- Display abstract
Nuclear protein import proceeds through the nuclear pore complex (NPC). Importin-beta mediates translocation via direct interaction with NPC components and carries importin-alpha with the NLS substrate from the cytoplasm into the nucleus. The import reaction is terminated by the direct binding of nuclear RanGTP to importin-beta which dissociates the importin heterodimer. Here, we analyse the sites of interaction on importin-beta for its multiple partners. Ran and importin-alpha respectively require residues 1-364 and 331-876 of importin-beta for binding. Thus, RanGTP-mediated release of importin-alpha from importin-beta is likely to be an active displacement rather than due to simple competition between Ran and importin-alpha for a common binding site. Importin-beta has at least two non-overlapping sites of interaction with the NPC, which could potentially be used sequentially during translocation. Our data also suggest that termination of import involves a transient release of importin-beta from the NPC. Importin-beta fragments which bind to the NPC, but not to Ran, resist this release mechanism. As would be predicted from this, these importin-beta mutants are very efficient inhibitors of NLS-dependent protein import. Surprisingly, however, they also inhibit M9 signal-mediated nuclear import as well as nuclear export of mRNA, U snRNA, and the NES-containing Rev protein. This suggests that mediators of these various transport events share binding sites on the NPC and/or that mechanisms exist to coordinate translocation through the NPC via different nucleocytoplasmic transport pathways.
- Noguchi E, Hayashi N, Nakashima N, Nishimoto T
- Yrb2p, a Nup2p-related yeast protein, has a functional overlap with Rna1p, a yeast Ran-GTPase-activating protein.
- Mol Cell Biol. 1997; 17: 2235-46
- Display abstract
The Ran-GTPase cycle is important for nucleus-cytosol exchange of macromolecules and other nuclear processes. We employed the two-hybrid method to identify proteins interacting with Ran and the Ran GTP/GDP exchange factor. Using PRP20, encoding the Ran GTP/GDP exchange factor, we identified YRB1, previously identified as a protein able to interact with human Ran GTP/GDP exchange factor RCC1 in the two-hybrid system. Using GSP1, encoding the yeast Ran, as bait, we isolated YRB2. YRB2 encodes a protein containing a Ran-binding motif similar to that found in Yrb1p and Nup2p. Yrb1p is located in the cytosol whereas Nup2p is nuclear. Similar to Yrb1p, Yrb2p bound to GTP-Gsp1p but not to GDP-Gsp1p and enhanced the GTPase-activating activity of Rna1p. However, unlike Yrb1p, Yrb2p did not inhibit the nucleotide-releasing activity of Prp20p. While overproduction of Yrb1p inhibited the growth of a mutant possessing a PRP20 mutation (srm1-1) and suppressed the rna1-1 mutation, overproduction of Yrb2p showed no effect on the growth of these mutants. Disruption of YRB2 made yeast cold sensitive and was synthetically lethal with rna1-1 but not with nup2delta. Nuclear protein import and the mRNA export were normal in strains possessing mutations of YRB2. We propose that Yrb2p is involved in the nuclear processes of the Ran-GTPase cycle which are not related to nucleus-cytosol exchange of macromolecules.
- Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D
- Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor.
- Cell. 1997; 90: 1061-71
- Display abstract
NLS proteins are transported into the nucleus by the importin alpha/beta heterodimer. Importin alpha binds the NLS, while importin beta mediates translocation through the nuclear pore complex. After translocation, RanGTP, whose predicted concentration is high in the nucleus and low in the cytoplasm, binds importin beta and displaces importin alpha. Importin alpha must then be returned to the cytoplasm, leaving the NLS protein behind. Here, we report that the previously identified CAS protein mediates importin alpha re-export. CAS binds strongly to importin alpha only in the presence of RanGTP, forming an importin alpha/CAS/RanGTP complex. Importin alpha is released from this complex in the cytoplasm by the combined action of RanBP1 and RanGAP1. CAS binds preferentially to NLS-free importin alpha, explaining why import substrates stay in the nucleus.
- Clarkson WD et al.
- Nuclear protein import is decreased by engineered mutants of nuclear transport factor 2 (NTF2) that do not bind GDP-Ran.
- J Mol Biol. 1997; 272: 716-30
- Display abstract
Nuclear transport factor 2 (NTF2) is associated with the translocation stage of nuclear protein import and binds both to nuclear pore proteins (nucleoporins) containing phenylalanine-rich repeats and to the Ras family GTPase Ran. In this study we probed the role of the NTF2-Ran interaction in nuclear protein import using site-directed mutants of NTF2 that interfere with its interaction with GDP-Ran. The design of these mutants was based on the X-ray crystal structure of NTF2 and was concentrated on conserved residues in and around the molecule's hydrophobic cavity. The mutant NTF2 cDNAs were expressed in Escherichia coli. Purified mutant proteins retained the interaction with FxFG-repeat nucleoporins, but several mutants in the negatively charged residues that surround the NTF2 cavity or in residues in the cavity itself were unable to bind GDP-Ran in vitro. The crystal structure of the E42K mutant protein showed significant structural changes only in this side-chain, indicating that it participated directly in the interaction with GDP-Ran. In permeabilised cell nuclear protein import assays, only wild-type NTF2 and mutants that bound GDP-Ran were functional. Furthermore, when the NTF2 E42K and D92N/D94N NTF2 mutants that failed to bind GDP-Ran in vitro were substituted for the chromosomal yeast NTF2, the yeast cells became non-viable, whereas yeast substituted with wild-type human NTF2 remained viable. We conclude that interaction between NTF2 and GDP-Ran is important for efficient nuclear protein import.
- Moroianu J
- Molecular mechanisms of nuclear protein transport.
- Crit Rev Eukaryot Gene Expr. 1997; 7: 61-72
- Display abstract
Transport of proteins into and out of the nucleus occurs through nuclear pore complexes (NPC). A heterodimeric protein complex, composed of karyopherin alpha and beta (or importin alpha and beta) functions to target proteins containing a nuclear localization sequence (NLS) to the NPCs. Two additional proteins, the GTPase Ran and p10, are required to translocate the docked NLS protein into the nucleus. The alpha subunit of karyopherin functions as the NLS receptor, whereas the beta subunit mediates docking to nucleoporins that contain peptide repeats. During import the karyopherin heterodimer dissociates: karyopherin alpha and import substrates enter and accumulate in the nucleoplasm, whereas karyopherin beta accumulates at the nuclear pore complex. Ran-GTP induces dissociation of karyopherin alpha from beta by forming a complex with karyopherin beta and promotes the release of both karyopherin subunits from a docking site. Protein transport across the NPC may occur via guided diffusion involving the karyopherin-mediated docking and undocking of import substrate to multiple binding sites that extend from the cytoplasmic to the nucleoplasmic ends of the NPC.
- Gorlich D et al.
- A novel class of RanGTP binding proteins.
- J Cell Biol. 1997; 138: 65-80
- Display abstract
The importin-alpha/beta complex and the GTPase Ran mediate nuclear import of proteins with a classical nuclear localization signal. Although Ran has been implicated also in a variety of other processes, such as cell cycle progression, a direct function of Ran has so far only been demonstrated for importin-mediated nuclear import. We have now identified an entire class of approximately 20 potential Ran targets that share a sequence motif related to the Ran-binding site of importin-beta. We have confirmed specific RanGTP binding for some of them, namely for two novel factors, RanBP7 and RanBP8, for CAS, Pse1p, and Msn5p, and for the cell cycle regulator Cse1p from Saccharomyces cerevisiae. We have studied RanBP7 in more detail. Similar to importin-beta, it prevents the activation of Ran's GTPase by RanGAP1 and inhibits nucleotide exchange on RanGTP. RanBP7 binds directly to nuclear pore complexes where it competes for binding sites with importin-beta, transportin, and apparently also with the mediators of mRNA and U snRNA export. Furthermore, we provide evidence for a Ran-dependent transport cycle of RanBP7 and demonstrate that RanBP7 can cross the nuclear envelope rapidly and in both directions. On the basis of these results, we propose that RanBP7 might represent a nuclear transport factor that carries an as yet unknown cargo, which could apply as well for this entire class of related RanGTP-binding proteins.
- Gorlich D
- Nuclear protein import.
- Curr Opin Cell Biol. 1997; 9: 412-9
- Display abstract
The defining feature of eukaryotic organisms is the cell nucleus. All nuclear proteins are synthesized in the cytoplasm and need to be imported through the nuclear pore complexes (NPCs) into the nucleus. Import can be directed by various signals, of which the classical nuclear localization signal (NLS) and the M9 import signal are the best characterized. The past year has provided insight into the functions of the key players in NLS- and M9-dependent import, the interactions of these key players and possible implications of these interactions for the import mechanism. Although an understanding of some of the steps in the import process is emerging, the molecular mechanism of the actual translocation through the NPC is still obscure.
- Delphin C, Guan T, Melchior F, Gerace L
- RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex.
- Mol Biol Cell. 1997; 8: 2379-90
- Display abstract
RanBP2, a protein containing FG repeat motifs and four binding sites for the guanosine triphosphatase Ran, is localized at the cytoplasmic periphery of the nuclear pore complex (NPC) and is believed to play a critical role in nuclear protein import. We purified RanBP2 from rat liver nuclear envelopes and examined its structural and biochemical properties. Electron microscopy showed that RanBP2 forms a flexible filamentous molecule with a length of approximately 36 nm, suggesting that it comprises a major portion of the cytoplasmic fibrils implicated in initial binding of import substrates to the NPC. Using in vitro assays, we characterized the ability of RanBP2 to bind p97, a cytosolic factor implicated in the association of the nuclear localization signal receptor with the NPC. We found that RanGTP promotes the binding of p97 to RanBP2, whereas it inhibits the binding of p97 to other FG repeat nucleoporins. These data suggest that RanGTP acts to specifically target p97 to RanBP2, where p97 may support the binding of an nuclear localization signal receptor/substrate complex to RanBP2 in an early step of nuclear import.
- Pu RT, Dasso M
- The balance of RanBP1 and RCC1 is critical for nuclear assembly and nuclear transport.
- Mol Biol Cell. 1997; 8: 1955-70
- Display abstract
Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly, when we used anti-RanBP1 antibodies to immunodeplete RanBP1 from Xenopus egg extracts, we found that the extracts were also depleted of RCC1, Ran's guanine nucleotide exchange factor, suggesting that these proteins form a stable complex. In contrast to previous observations using extracts that had been depleted of RCC1 only, extracts lacking both RanBP1 and RCC1 (codepleted extracts) did not exhibit defects in assays of nuclear assembly, nuclear transport, or DNA replication. Addition of either recombinant RanBP1 or RCC1 to codepleted extracts to restore only one of the depleted proteins caused abnormal nuclear assembly and inhibited nuclear transport and DNA replication in a manner that could be rescued be further addition of RCC1 or RanBP1, respectively. Exogenous mutant Ran proteins could partially rescue nuclear function in extracts without RanBP1 or without RCC1, in a manner that was correlated with their nucleotide binding state. These results suggest that little RanBP1 or RCC1 is required for nuclear assembly, nuclear import, or DNA replication in the absence of the other protein. The results further suggest that the balance of GTP- and GDP-Ran is critical for proper nuclear assembly and function in vitro.
- Corbett AH, Silver PA
- Nucleocytoplasmic transport of macromolecules.
- Microbiol Mol Biol Rev. 1997; 61: 193-211
- Display abstract
Nucleocytoplasmic transport is a complex process that consists of the movement of numerous macromolecules back and forth across the nuclear envelope. All macromolecules that move in and out of the nucleus do so via nuclear pore complexes that form large proteinaceous channels in the nuclear envelope. In addition to nuclear pores, nuclear transport of macromolecules requires a number of soluble factors that are found both in the cytoplasm and in the nucleus. A combination of biochemical, genetic, and cell biological approaches have been used to identify and characterize the various components of the nuclear transport machinery. Recent studies have shown that both import to and export from the nucleus are mediated by signals found within the transport substrates. Several studies have demonstrated that these signals are recognized by soluble factors that target these substrates to the nuclear pore. Once substrates have been directed to the pore, most transport events depend on a cycle of GTP hydrolysis mediated by the small Ras-like GTPase, Ran, as well as other proteins that regulate the guanine nucleotide-bound state of Ran. Many of the essential factors have been identified, and the challenge that remains is to determine the exact mechanism by which transport occurs. This review attempts to present an integrated view of our current understanding of nuclear transport while highlighting the contributions that have been made through studies with genetic organisms such as the budding yeast, Saccharomyces cerevisiae.
- Kuhlmann J, Macara I, Wittinghofer A
- Dynamic and equilibrium studies on the interaction of Ran with its effector, RanBP1.
- Biochemistry. 1997; 36: 12027-35
- Display abstract
Ran, a small nuclear GTP-binding protein, is one of the most abundant Ras-related proteins in eucaryotic cells. Ran is essential for nucleo-cytoplasmatic transport and is primarily localized in the nucleus and at the nuclear pore complex. Here, we characterize the kinetics and equilibrium of the interaction between Ran and RanBP1 by two independent biophysical approaches: fluorescence spectroscopy using analogues of guanine nucleotides and surface plasmon resonance in the BIAcore system. Both approaches result in kinetic and equilibrium data which are in good agreement with each other. Affinities of RanBP1 for Ran in the GTP-bound state were in the nanomolar range, while Ran.GDP bound RanBP1 with a dissociation constant around 10 microM. Interestingly, the difference in affinity of RanBP1 for Ran.GDP was mostly due to a dramatic increase of the dissociation rate constant. Mutant Ran protein lacking the last five amino acids of the C-terminus (RanDeltaC) is unable to facilitate nuclear import in vitro and does not bind to RanBP1. Here, we show that RanBP1 binds RanDeltaC.mGppNHp with KD values around 10 microM, as is the case for its association with full-length Ran.GDP. The loss of affinity of RanBP1 for the triphosphate form of RanDeltaC was a result of both a decrease of the association rate and a moderately increased dissociation of the RanDeltaC.RanBP1 complex. Circular dichroism spectra indicate significant changes in the secondary structure of either Ran.GppNHp, RanBP1, or both proteins upon forming a stable complex with each other.
- Kose S, Imamoto N, Tachibana T, Shimamoto T, Yoneda Y
- Ran-unassisted nuclear migration of a 97-kD component of nuclear pore-targeting complex.
- J Cell Biol. 1997; 139: 841-9
- Display abstract
A 97-kD component of nuclear pore-targeting complex (the beta-subunit of nuclear pore-targeting complex [PTAC]/importin/karyopherin) mediates the import of nuclear localization signal (NLS)-containing proteins by anchoring the NLS receptor protein (the alpha-subunit of PTAC/importin/karyopherin) to the nuclear pore complex (NPC). The import requires a small GTPase Ran, which interacts directly with the beta-subunit. The present study describes an examination of the behavior of the beta-subunit in living cells and in digitonin-permeabilized cells. In living cells, cytoplasmically injected beta-subunit rapidly migrates into the nucleus. The use of deletion mutants reveals that nuclear migration of the beta-subunit requires neither Ran- nor alpha-subunit-binding but only the NPC-binding domain of this molecule, which is also involved in NLS-mediated import. Furthermore, unlike NLS-mediated import, a dominant-negative Ran, defective in GTP-hydrolysis, did not inhibit nuclear migration of the beta-subunit. In the digitonin-permeabilized cell-free import assay, the beta-subunit transits rapidly through the NPC into the nucleus in a saturating manner in the absence of exogenous addition of soluble factors. These results show that the beta-subunit undergoes translocation at the NPC in a Ran-unassisted manner when it does not carry alpha-subunit/NLS substrate. Therefore, a requirement for Ran arises only when the beta-subunit undergoes a translocation reaction together with the alpha-subunit/NLS substrate. The results provide an insight to the yet unsolved question regarding the mechanism by which proteins are directionally transported through the NPC, and the role of Ran in this process.
- Yaseen NR, Blobel G
- Cloning and characterization of human karyopherin beta3.
- Proc Natl Acad Sci U S A. 1997; 94: 4451-6
- Display abstract
Nuclear import of classical nuclear localization sequence-bearing proteins is mediated by karyopherin alpha/beta1 heterodimers. A second nuclear import pathway, mediated by karyopherin beta2 (transportin), recently was described for mRNA-binding proteins. Here we report the cloning and characterization of human karyopherin beta3, which may be involved in a third pathway for nuclear import. Karyopherin beta3 was localized mainly to the cytosol and the nucleus, particularly the nuclear rim. It bound to several of the repeat-containing nucleoporins (Nup358, Nup214, Nup153, Nup98, and p62) in overlay and solution-binding assays and was competed away by karyopherin beta1. For Nup98, we localized this binding to the peptide repeat-containing region. Karyopherin beta3 contains two putative Ran-binding homology regions and bound to Ran-GTP in a solution-binding assay with much higher affinity than to Ran-GDP. Furthermore, it interacted with two ribosomal proteins in an overlay assay. We suggest that karyopherin beta3 is a nuclear transport factor that may mediate the import of some ribosomal proteins into the nucleus.
- Imamoto N
- [Molecular mechanism of nuclear protein import]
- Seikagaku. 1997; 69: 383-93
- Goldfarb DS
- Whose finger is on the switch?
- Science. 1997; 276: 1814-6
- Percipalle P, Clarkson WD, Kent HM, Rhodes D, Stewart M
- Molecular interactions between the importin alpha/beta heterodimer and proteins involved in vertebrate nuclear protein import.
- J Mol Biol. 1997; 266: 722-32
- Display abstract
We have used in vitro binding assays to examine specific interactions between a number of cytoplasmic and nuclear pore proteins involved in nuclear protein import in vertebrates. We demonstrate that nuclear transport factor 2 (NTF2), nucleoporin p62 and the Ras-like GTPase Ran bind to the importin heterodimer via its beta subunit. The binding behaviour of p62 truncation mutants indicated that importin-beta interacts primarily with the alpha-helical coiled-coil rod domain of nucleoporin p62 and not with the N-terminal domain that contains a number of degenerate repeats based on the xFxFG sequence motif. The binding of Ran to importin-beta was sensitive to its nucleotide state, with RanGTP binding strongly, whereas RanGDP binding could not be detected using our assay conditions. RanGTP, but not RanGDP, was able to displace p62 bound to the importin alpha/beta complex, suggesting that the binding sites for p62 and RanGTP on importin-beta overlap. Moreover, RanGTP, but not RanGDP, weakened the interaction between importin-alpha and importin-beta in a concentration-dependent manner. NTF2 bound to the importin heterodimer but did not displace p62, suggesting that the NTF2 and p62 binding sites on importin-beta do not overlap. The set of interactions we observed was not altered by the binding of NLS-containing substrates such as transcription factor IIIA to the importin heterodimer. Our results are consistent with models for nuclear protein import in which Ran nucleotide exchange modulates the binding of the importin-substrate complexes during translocation through nuclear pore complexes.
- Her LS, Lund E, Dahlberg JE
- Inhibition of Ran guanosine triphosphatase-dependent nuclear transport by the matrix protein of vesicular stomatitis virus.
- Science. 1997; 276: 1845-8
- Display abstract
Transport of macromolecules into and out of nuclei, essential steps in gene expression, are potential points of control. The matrix protein (M protein) of vesicular stomatitis virus (VSV) was shown to block transport of RNAs and proteins between the nucleus and cytoplasm of Xenopus laevis oocytes. The pattern of inhibition indicated that M protein interfered with transport that is dependent on the ras-like nuclear guanosine triphosphatase (GTPase) Ran-TC4 and its associated factors. This inhibition of nuclear transport by M protein explains several observations about the effects of VSV infection on host cell gene expression and suggests that RNA export is closely coupled to protein import.
- Chi NC, Adam EJ, Adam SA
- Different binding domains for Ran-GTP and Ran-GDP/RanBP1 on nuclear import factor p97.
- J Biol Chem. 1997; 272: 6818-22
- Display abstract
Several proteins are required for the transport of nuclear proteins from the cytoplasm to the nucleus, including the nuclear location sequence receptor (NLS receptor), p97, the small nuclear GTPase Ran/TC4, and several nucleoporins. The interaction of Ran with p97 is thought to regulate the interaction of these transport components. Ran-GTP alone binds p97, but Ran-GDP binds p97 only in conjunction with RanBP1. Using site-directed mutagenesis and deletion analysis, we have identified two distinct but overlapping binding domains for Ran-GTP and Ran-GDP/RanBP1 on p97. A short acidic sequence in p97 is part of the Ran-GDP/RanBP1 binding domain, possibly functioning in a similar manner as the C-terminal acidic sequence in Ran. A conserved cysteine residue in p97, Cys-158, is required for binding Ran-GDP/RanBP1, but not for binding of Ran-GTP to p97. In a permeabilized cell protein import assay, a mutant p97 with alanine substituted for Cys-158 is unable to support import in the presence of NLS receptor and Ran. These results support a direct active role for Ran-GDP in the receptor complex and provide evidence that the activity of downstream effectors of small GTPases may be regulated by both GTP- and GDP-bound forms of the protein.
- Bischoff FR, Gorlich D
- RanBP1 is crucial for the release of RanGTP from importin beta-related nuclear transport factors.
- FEBS Lett. 1997; 419: 249-54
- Display abstract
Nucleocytoplasmic transport appears mediated by shuttling transport receptors that bind RanGTP as a means to regulate interactions with their cargoes. The receptor-RanGTP complexes are kinetically very stable with nucleotide exchange and GTP hydrolysis being blocked, predicting that a specific disassembly mechanism exists. Here we show in three cases receptor RanGTP x RanBP1 complexes to be the key disassembly intermediates, where RanBP1 stimulates the off-rate at the receptor/RanGTP interface by more than two orders of magnitude. The transiently released RanGTP x RanBP1 complex is then induced by RanGAP to hydrolyse GTP, preventing the receptor to rebind RanGTP. The efficient release of importin beta from RanGTP requires importin alpha, in addition to RanBP1.
- Melen K, Keskinen P, Ronni T, Sareneva T, Lounatmaa K, Julkunen I
- Human MxB protein, an interferon-alpha-inducible GTPase, contains a nuclear targeting signal and is localized in the heterochromatin region beneath the nuclear envelope.
- J Biol Chem. 1996; 271: 23478-86
- Display abstract
Interferon-inducible Mx proteins belong to the family of large GTPases and are highly homologous with dynamins within their GTP-binding domain. Cytoplasmically localized human MxA protein mediates resistance to influenza and several other viruses, whereas human MxB protein has not been found to have any antiviral activity. Here we show that MxB protein is found both in the cytoplasm and in the nucleus, where it is localized in a granular pattern in the heterochromatin region beneath the nuclear envelope. Transfection experiments in COS cells of N-terminally deleted MxB constructs revealed a functional nuclear localization signal within the first 24 N-terminal amino acids. Nuclear 78-kDa and cytoplasmic 76-kDa forms of MxB protein were found in all of the cell lines studied and in human peripheral blood mononuclear cells. MxB protein proved to be a functional GTPase with activity comparable to that of MxA protein. N-terminally truncated (delta1-82) MxB protein lacking both the nuclear localization signal and a proline-rich domain had almost completely lost its GTPase activity. Analysis of peripheral blood mononuclear cells suggested that MxB protein expression is strictly regulated by interferon-alpha. This is the first documentation that human Mx protein resides in the nucleus. It also emphasizes that there are considerable differences in the localization and structure of functional domains within Mx proteins.
- Hassel I et al.
- Export of ribosomal subunits from resealed rat liver nuclear envelopes.
- Eur J Biochem. 1996; 241: 32-7
- Display abstract
We have previously described the rat liver resealed nuclear envelope model system for the study of the selective import of nuclear proteins, and the export of poly(A)-containing mRNA [Riedel, N., Bachmann, M., Richter, H. & Fasold, H. (1987) Proc. Natl Acad. Sci. USA 83, 3540-3544]. The vesicles still respond to the importin-ATP signal for the uptake of nuclear-location-sequence (NLS)-carrying proteins. During the preparation of the vesicles and extraction of the chromatin from nuclei in cold hypotonic heparin solution, ribosomal subunits may be introduced into these envelopes, and after resealing remain stably included. Efflux from the resealed nuclear envelopes is effected by a cytoplasmatic protein fraction, and strongly enhanced in the presence of ATP. The heterogeneous nuclear RNP (hnRNP) A1, the components of importin, or GTP showed no influence on this export. The ATP-dependent efflux of mRNA is not affected by these cytoplasmic proteins in this model system.
- Corbett A et al.
- Genetic analysis of macromolecular transport across the nuclear envelope.
- Exp Cell Res. 1996; 229: 212-6
- Display abstract
Numerous factors that promote movement of macromolecules in and out of the nucleus have now been identified. These include both soluble cytoplasmic and nucleoplasmic proteins and proteins of the nuclear pore complex (NPC). Genetic analyses of the nuclear transport process in the model organism, the budding yeast Saccharomyces cerevisiae, have revealed remarkable conservation of all of these factors. In addition, important clues as to how these factors promote the unique bidirectional movement across the NPC have emerged from studies of yeast. We summarize the characterization and genetic interactions of the soluble transport factors and present data to illustrate how genetic experiments can be used to further define the import and export pathways.
- Moroianu J, Blobel G, Radu A
- Nuclear protein import: Ran-GTP dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta.
- Proc Natl Acad Sci U S A. 1996; 93: 7059-62
- Display abstract
The alpha subunit of the karyopherin heterodimer functions in recognition of the protein import substrate and the beta subunit serves to dock the trimeric complex to one of many sites on nuclear pore complex fibers. The small GTPase Ran and the Ran interactive protein, p10, function in the release of the docked complex. Repeated cycles of docking and release are thought to concentrate the transport substrate for subsequent diffusion into the nucleus. Ran-GTP dissociates the karyopherin heterodimer and forms a stoichiometric complex with Ran-GTP. Here we report the mapping of karyopherin beta's binding sites both for Ran-GTP and for karyopherin alpha. We discovered that karyopherin beta's binding site for Ran-GTP shows a striking sequence similarity to the cytoplasmic Ran-GTP binding protein, RanBP1. Moreover, we found that Ran-GTP and karyopherin alpha bind to overlapping sites on karyopherin beta. Having a higher affinity to the overlapping site, Ran-GTP displaces karyopherin alpha and binds to karyopherin beta. Competition for overlapping binding sites may be the mechanism by which GTP bound forms of other small GTPases function in corresponding dissociation-association reactions. We also mapped Ran's binding site for karyopherin beta to a cluster of basic residues analogous to those previously shown to constitute karyopherin alpha's binding site to karyopherin beta.
- Sweet DJ, Gerace L
- A GTPase distinct from Ran is involved in nuclear protein import.
- J Cell Biol. 1996; 133: 971-83
- Display abstract
Signal-dependent transport of proteins into the nucleus is a multi-step process mediated by nuclear pore complexes and cytosolic transport factors. One of the cytosolic factors, Ran, is the only GTPase that has a characterized role in the nuclear import pathway. We have used a mutant form of Ran with altered nucleotide binding specificity to investigate whether any other GTPases are involved in nuclear protein import. D125N Ran (XTP-Ran) binds specifically to xanthosine triphosphate (XTP) and has a greatly reduced affinity for GTP, so it is no longer sensitive to inhibition by nonhydrolyzable analogues of GTP such as guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). using in vitro transport assays, we have found that nuclear import supported by XTP-Ran is nevertheless inhibited by the addition of non-hydrolyzable GTP analogues. This in conjunction with the properties of the inhibitory effect indicates that at least one additional GTPase is involved in the import process. Initial characterization suggests that the inhibited GTPase plays a direct role in protein import and could be a component of the nuclear pore complex.
- Carey KL, Richards SA, Lounsbury KM, Macara IG
- Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import.
- J Cell Biol. 1996; 133: 985-96
- Display abstract
The Ran/TC4 GTPase is required for the nuclear accumulation of artificial karyophiles in permeabilized cell assays. To investigate Ran function in a physiologically intact setting using mammalian cells, we examined the effects of several Ran mutants on cell growth and on the nuclear translocation of a glucocorticoid receptor-green fluorescent protein fusion (GR-GFP). Glucocorticoid receptor is cytosolic in the absence of ligand, but translocates to the nucleus on binding the agonist dexamethasone. After transfection into baby hamster kidney cells (BHK21), GR-GFP was detectable in living cells by direct fluorescence microscopy. Addition of dexamethasone caused a rapid translocation of the chimeric protein from the cytosol into the nucleus (t1/2 approximately 5 min). Cotransfection with epitope-tagged, wild-type Ran led to expression of HA1-Ran that was approximately 1.6-fold higher than the level of the endogenous protein, but it had no deleterious effect on nuclear import of the GR-GFP. However, expression of the Ran mutants G19V, T24N, or a COOH-terminal deletion (delta C) mutant dramatically reduced the accumulation of GR-GFP in the nuclei. An L43E mutant of Ran was without significant effect on nuclear GR-GFP import. Identical results were obtained following micro-injection of recombinant Ran mutants into cells expressing GR-GFP. Significantly, all of the Ran mutants, including L43E, strongly inhibited cell growth. These results demonstrate the use of GR-GFP in real-time imaging of nuclear transport. They also show that multiple types of Ran mutant exert dominant effects on this process, and that normal Ran function requires cycling between the GTP- and GDP-bound states of the protein. Most importantly, the results with the L43E Ran mutant provide strong evidence that Ran mediates a function essential to cell viability that is independent of nuclear protein import.
- Ohba T, Seki T, Azuma Y, Nishimoto T
- Premature chromatin condensation induced by loss of RCC1 is inhibited by GTP- and GTPgammaS-Ran, but not GDP-Ran.
- J Biol Chem. 1996; 271: 14665-7
- Display abstract
RCC1 is a guanine nucleotide exchanging factor acting on nuclear G protein Ran. Premature chromatin condensation occurs in the temperature-sensitive rcc1- mutant of the BHK21 cell line, tsBN2, at the restrictive temperature. This observation can be explained if the premature activation of MPF is normally inhibited by GTP-Ran. In the absence of RCC1, GDP-Ran predominates, resulting in MPF activation. However, experiments with Ran mutants to determine whether GTP- or GDP-Ran prevents activation of MPF have yielded conflicting results. In order to clarify this point, we have microinjected nucleotide-bound Ran, instead of mutated Ran, into the nuclei of tsBN2 cells treated to reduce RCC1-mediated guanine nucleotide exchange. GTP-Ran, GTPgammaS-Ran, and GDP-Ran all inhibited chromatin condensation. However, the inhibition of chromatin condensation by GDP-Ran could be completely abolished by co-injection with GDP, but not GTP. Thus, we conclude that GTP-Ran blocks the activation of MPF and that hydrolysis of GTP is not required to prevent MPF activation.
- Nishimoto T
- [Cell cycle regulation and Ran/TC4 GTPase]
- Tanpakushitsu Kakusan Koso. 1996; 41: 1906-12
- Collas P, Alestrom P
- Nuclear localization signal of SV40 T antigen directs import of plasmid DNA into sea urchin male pronuclei in vitro.
- Mol Reprod Dev. 1996; 45: 431-8
- Display abstract
Nuclear import of plasmid DNA mediated by a nuclear localization signal (NLS) derived from SV40 T antigen was investigated in a cell-free extract. In vitro assembled sea urchin male pronuclei were incubated in a 100,000g supernatant of a zebrafish fertilized egg lysate, together with fluorescently labeled plasmid DNA bound to NLS or nuclear import deficient reverse NLS (revNLS) peptides. After 3 hr, DNA-NLS, but not DNA-revNLS, complexes were bound around the nuclear periphery. We demonstrate that nuclear import of DNA-NLS complexes is a two-step process involving binding to, and translocation across, the nuclear envelope. Binding is ATP-independent, occurs at 0 degree C and is Ca(2+)-independent. By contrast, translocation requires ATP hydrolysis, Ca2+, is temperature dependent and is blocked by the lectin wheat germ agglutinin. Both binding and translocation are competitively inhibited by albumin-NLS conjugates, require heat-labile cytosolic factors, and are inhibited by N-ethylmaleimide treatment of the cytosol. Binding and translocation are differentially affected by cytosol dilutions, suggesting that at least two distinct soluble fractions are required for nuclear import. The requirements for NLS-mediated nuclear import of plasmid DNA are similar to those for nuclear import of protein-NLS conjugates in permeabilized cells.
- Richards SA, Lounsbury KM, Carey KL, Macara IG
- A nuclear export signal is essential for the cytosolic localization of the Ran binding protein, RanBP1.
- J Cell Biol. 1996; 134: 1157-68
- Display abstract
RanBP1 is a Ran/TC4 binding protein that can promote the interaction between Ran and beta-importin /beta-karyopherin, a component of the docking complex for nuclear protein cargo. This interaction occurs through a Ran binding domain (RBD). Here we show that RanBP1 is primarily cytoplasmic, but the isolated RBD accumulates in the nucleus. A region COOH-terminal to the RBD is responsible for this cytoplasmic localization. This domain acts heterologously, localizing a nuclear cyclin B1 mutant to the cytoplasm. The domain contains a nuclear export signal that is necessary but not sufficient for the nuclear export of a functional RBD In transiently transfected cells, epitope-tagged RanBP1 promotes dexamethasone-dependent nuclear accumulation of a glucocorticoid receptor-green fluorescent protein fusion, but the isolated RBD potently inhibits this accumulation. The cytosolic location of RanBP1 may therefore be important for nuclear protein import. RanBP1 may provide a key link between the nuclear import and export pathways.
- Enenkel C, Schulke N, Blobel G
- Expression in yeast of binding regions of karyopherins alpha and beta inhibits nuclear import and cell growth.
- Proc Natl Acad Sci U S A. 1996; 93: 12986-91
- Display abstract
Using truncated forms of recombinant yeast karyopherins alpha and beta in in vitro binding assays, we mapped the regions of karyopherin alpha that bind to karyopherin beta and the regions of karyopherin beta that interact with karyopherin alpha and with Ran-GTP. Karyopherin alpha's binding region for karyopherin beta was localized to its N-terminal domain, which contains several clusters of basic residues, whereas karyopherin beta's binding region for karyopherin alpha was localized to an internal region containing two clusters of acidic residues. Karyopherin beta's binding region for Ran-GTP overlaps with that for karyopherin alpha and comprises at least one of the two acidic clusters required for karyopherin alpha binding in addition to further downstream determinants not required for karyopherin alpha binding. Overexpression in yeast of fragments containing either karyopherin beta's binding region for alpha and Ran-GTP or karyopherin alpha's binding region for beta resulted in sequestration of most of the cytosolic karyopherin alpha or karyopherin beta, respectively, in complexes containing the truncated proteins. As these binding region-containing fragments lack other domains required for function of the corresponding protein, the overexpression of either fragment also inhibited in vivo nuclear import of a model reporter protein as well as cell growth.
- Hurt EC
- Importins/karyopherins meet nucleoporins.
- Cell. 1996; 84: 509-15
- Tachibana T, Hieda M, Sekimoto T, Yoneda Y
- Exogenously injected nuclear import factor p10/NTF2 inhibits signal-mediated nuclear import and export of proteins in living cells.
- FEBS Lett. 1996; 397: 177-82
- Display abstract
p10/NTF2 is a cytosolic factor which is required for the translocation step in nuclear protein import in an in vitro assay with digitonin-permeabilized cells. To study the functional roles of p10/NTF2 on protein transport between the nucleus and cytoplasm in living cells, recombinant p10/NTF2 was micro-injected into cultured mammalian cells. Cytoplasmically injected p10/NTF2 strongly inhibited the nuclear import of co-injected NLS-containing substrates in a dose-dependent manner but had no effect on the diffusive import of small non-nuclear proteins. Moreover, when injected into the cell nucleus, p10/NTF2 inhibited the nuclear export of NES-containing substrates. The results suggest that the nuclear import factor p10/NTF2 may also be involved in the nuclear export of proteins and that the protein transport efficiency between the nucleus and cytoplasm may be regulated by the intracellular level of p10/NTF2.
- Chi NC, Adam EJ, Visser GD, Adam SA
- RanBP1 stabilizes the interaction of Ran with p97 nuclear protein import.
- J Cell Biol. 1996; 135: 559-69
- Display abstract
Three factors have been identified that reconstitute nuclear protein import in a permeabilized cell assay: the NLS receptor, p97, and Ran/TC4. Ran/TC4, in turn, interacts with a number of proteins that are involved in the regulation of GTP hydrolysis or are components of the nuclear pore. Two Ran-binding proteins, RanBP1 and RanBP2, form discrete complexes with p97 as demonstrated by immunoadsorption from HeLa cell extracts fractionated by gel filtration chromatography. A > 400-kD complex contains p97, Ran, and RanBP2. Another complex of 150-300 kD was comprised of p97, Ran, and RanBP1. This second trimeric complex could be reconstituted from recombinant proteins. In solution binding assays, Ran-GTP bound p97 with high affinity, but the binding of Ran-GDP to p97 was undetectable. The addition of RanBP1 with Ran-GDP or Ran-GTP increased the affinity of both forms of Ran for p97 to the same level. Binding of Ran-GTP to p97 dissociated p97 from immobilized NLS receptor while the Ran-GDP/RanBP1/p97 complex did not dissociate from the receptor. In a digitonin-permeabilized cell docking assay, RanBP1 stabilizes the receptor complex against temperature-dependent release from the pore. When added to an import assay with recombinant NLS receptor, p97 and Ran-GDP, RanBP1 significantly stimulates transport. These results suggest that RanBP1 promotes both the docking and translocation steps in nuclear protein import by stabilizing the interaction of Ran-GDP with p97.
- Vandromme M, Gauthier-Rouviere C, Lamb N, Fernandez A
- Regulation of transcription factor localization: fine-tuning of gene expression.
- Trends Biochem Sci. 1996; 21: 59-64
- Display abstract
Import of 'nuclear' proteins into the nucleus, in particular, transcription factors, is not a constitutive process; instead it appears to be modulated in response to external stimuli, cell-cycle progression and developmental cues. Examples of such regulation involve direct phosphorylation of the transported protein, masking of the nuclear localization signal(s), cytoplasmic retention by binding to an anchoring protein, modulation of the import machinery itself and possible interplay between these different mechanisms. As such, nucleo-cytoplasmic traffic constitutes an important regulatory checkpoint in the control of gene expression.
- Sekimoto T, Nakajima K, Tachibana T, Hirano T, Yoneda Y
- Interferon-gamma-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4.
- J Biol Chem. 1996; 271: 31017-20
- Display abstract
In response to interferon-gamma (IFN-gamma), Stat1 enters the nucleus, where it activates transcription. In order to better understand the mechanism of the extracellular signal-induced protein import into the nucleus, we have established an in vivo assay system that uses recombinant Stat1 protein as a model transport substrate. Using this system, we found that Stat1 is actively transported through the nuclear pores in an IFN-gamma-dependent manner and tyrosine (Tyr701) phosphorylation of Stat1 is actually required for its nuclear import. When the antibody against Ran, which was identified as an essential factor for active nuclear protein transport, was injected, the IFN-gamma-dependent nuclear transport of Stat1 was completely inhibited. Furthermore, nuclear import of Stat1 was suppressed by microinjection of two mutant Ran proteins, one defective in GTP hydrolysis (G19V) and the other with little or no binding to GTP (T24N), both of which are known to act as dominant negative inhibitors of nuclear import. These results indicate that the conditional nuclear import of Stat1 requires GTP hydrolysis by Ran.
- Nehrbass U, Blobel G
- Role of the nuclear transport factor p10 in nuclear import.
- Science. 1996; 272: 120-2
- Display abstract
The nuclear import factor p10 was cloned from Saccharomyces cerevisiae and found to be essential. The protein p10 can bind directly to several peptide repeat-containing nucleoporins. It also binds to the guanosine triphosphatase (GTPase) Ran in its guanosine diphosphate (GDP)-bound form and to karyopherin beta. Assembly of the karyopherin heterodimer on immobilized nucleoporin yielded cooperative binding of p10 and Ran-GDP. Addition of GTP to this pentameric complex led to dissociation of karyopherin (chi, presumably via in situ formation of Ran-GTP from Ran-GDP. Thus, p10 appears to coordinate the Ran-dependent association and dissociation reactions underlying nuclear import.
- Sweitzer TD, Hanover JA
- Calmodulin activates nuclear protein import: a link between signal transduction and nuclear transport.
- Proc Natl Acad Sci U S A. 1996; 93: 14574-9
- Display abstract
In addition to the well-characterized GTP-dependent nuclear transport observed in permeabilized cells, we detected a mode of nuclear transport that was GTP-independent at elevated cytoplasmic calcium concentrations. Nuclear transport under these conditions was blocked by calmodulin inhibitors. Recombinant calmodulin restored ATP-dependent nuclear transport in the absence of cytosol. Calmodulin-dependent transport was inhibited by wheat germ agglutinin consistent with transport proceeding through nuclear pores. We propose that release of intracellular calcium stores upon cell activation inhibits GTP-dependent nuclear transport; the elevated cytosolic calcium then acts through calmodulin to stimulate the novel GTP-independent mode of import.
- Gorlich D, Pante N, Kutay U, Aebi U, Bischoff FR
- Identification of different roles for RanGDP and RanGTP in nuclear protein import.
- EMBO J. 1996; 15: 5584-94
- Display abstract
The importin-alpha/beta heterodimer and the GTPase Ran play key roles in nuclear protein import. Importin binds the nuclear localization signal (NLS). Translocation of the resulting import ligand complex through the nuclear pore complex (NPC) requires Ran and is terminated at the nucleoplasmic side by its disassembly. The principal GTP exchange factor for Ran is the nuclear protein RCC1, whereas the major RanGAP is cytoplasmic, predicting that nuclear Ran is mainly in the GTP form and cytoplasmic Ran is in the GDP-bound form. Here, we show that nuclear import depends on cytoplasmic RanGDP and free GTP, and that RanGDP binds to the NPC. Therefore, import might involve nucleotide exchange and GTP hydrolysis on NPC-bound Ran. RanGDP binding to the NPC is not mediated by the Ran binding sites of importin-beta, suggesting that translocation is not driven from these sites. Consistently, a mutant importin-beta deficient in Ran binding can deliver its cargo up to the nucleoplasmic side of the NPC. However, the mutant is unable to release the import substrate into the nucleoplasm. Thus, binding of nucleoplasmic RanGTP to importin-beta probably triggers termination, i.e. the dissociation of importin-alpha from importin-beta and the subsequent release of the import substrate into the nucleoplasm.
- Koepp DM, Wong DH, Corbett AH, Silver PA
- Dynamic localization of the nuclear import receptor and its interactions with transport factors.
- J Cell Biol. 1996; 133: 1163-76
- Display abstract
Characterization of the interactions between soluble factors required for nuclear transport is key to understanding the process of nuclear trafficking. Using a synthetic lethal screen with the rna1-1 strain, we have identified a genetic interaction between Rna1p, a GTPase activating protein required for nuclear transport, and yeast importin-beta, a component of the nuclear localization signal receptor. By the use of fusion proteins, we demonstrate that Rna1p physically interacts with importin-beta. Mutants in importin-beta exhibit in vivo nuclear protein import defects, and importin-beta localizes to the nuclear envelope along with other proteins associated with the nuclear pore complex. In addition, we present evidence that importin-alpha, but not importin-beta, mislocalizes to the nucleus in cells where the GTPase Ran is likely to be in the GDP-bound state. We suggest a model of nuclear transport in which Ran-mediated hydrolysis of GTP is necessary for the import of importin-alpha and the nuclear localization signal-bearing substrate into the nucleus, while exchange of GDP for GTP on Ran is required for the export of both mRNA and importin-alpha from the nucleus.
- Paschal BM, Delphin C, Gerace L
- Nucleotide-specific interaction of Ran/TC4 with nuclear transport factors NTF2 and p97.
- Proc Natl Acad Sci U S A. 1996; 93: 7679-83
- Display abstract
The use of permeabilized cell models to study nuclear protein import has led to the identification of cytosolic components of the import machinery, including the NLS receptor, p97, Ran/TC4, and nuclear transport factor 2 (NTF2). These proteins are required to reconstitute docking of transport ligand at the nuclear pore complex and subsequent translocation through the nuclear pore. However, a detailed molecular understanding of how these factors mediate protein import is lacking. Here we describe the results of solution and solid phase binding assays, which demonstrate that the small GTPase Ran/TC4 interacts directly with the cytosolic transport factors p97 and NTF2. By preloading recombinant Ran/TC4 with [gamma-32P]GTP or [3H]GDP, we show that the interactions with p97 and NTF2 are specific for the GTP- and GDP-bound forms, respectively. These data together with previous studies lead us to suggest that the interaction of the GTP-bound form of Ran/TC4 with p97 is linked to an early step in the nuclear protein import pathway and that the association of the GDP-bound form of Ran/TC4 with NTF2 helps define vectorial transport.
- Azuma Y et al.
- Conserved histidine residues of RCC1 are essential for nucleotide exchange on Ran.
- J Biochem (Tokyo). 1996; 120: 82-91
- Display abstract
Charged amino acid residues of human RCC1 were converted to alanine and mutants which were unable to complement tsBN2 cells (a temperature-sensitive rcc1- mutant of the hamster BHK21 cell line) were selected. These RCC1 mutants were analyzed for the ability to inhibit premature chromatin condensation by microinjection into tsBN2 cells, and their steady-state kinetic parameters for guanine nucleotide exchange reaction were measured. Examined RCC1 mutants were unstable in tsBN2 cells at the restrictive temperature, yet they significantly inhibited premature chromatin condensation. Mutants located on the N-terminus of the RCC1 repeat showed an increased K(m), while their kcat values were comparable to that of wild-type RCC1. In contrast, mutants containing the conserved histidine residues in the C-terminus of the RCC1 repeat showed a value of K(m) similar to that of wild-type RCC1, while the kcat values of these mutants were reduced, depending upon the RCC1 repeats on which the mutation was located. These steady-state kinetic parameters of mutants indicate that the N-terminus and the C-terminus of RCC1 repeats play different roles in guanine nucleotide exchange on Ran. The comparison of kcat among the histidine mutants suggests that those histidine residues which are conserved in the RCC1 repeats and also through evolution comprise the catalytic site for the guanine nucleotide exchange reaction.
- Gorlich D et al.
- Importin provides a link between nuclear protein import and U snRNA export.
- Cell. 1996; 87: 21-32
- Display abstract
Importin-alpha mediates nuclear protein import by binding nuclear localization signals and importin-beta. We find approximately 30% of SRP1p, the yeast importin-alpha, in a nuclear complex with the Saccharomyces cerevisiae nuclear cap-binding protein complex (CBC). Similarly, a large fraction of Xenopus CBC is associated with importin-alpha in the nucleus. CBC promotes nuclear export of capped U snRNAs and shuttles between nucleus and cytoplasm. The CBC-importin-alpha complex binds specifically to capped RNA, suggesting that CBC might shuttle while bound to importin-alpha. Strikingly, importin-beta binding displaces the RNA from the CBC-importin-alpha complex. Thus, the commitment of CBC for nuclear reentry triggers the release of the export substrate into the cytoplasm. We provide evidence for a mechanism that ensures that importin-mediated RNA release is a specifically cytoplasmic event.
- Matynia A, Dimitrov K, Mueller U, He X, Sazer S
- Perturbations in the spi1p GTPase cycle of Schizosaccharomyces pombe through its GTPase-activating protein and guanine nucleotide exchange factor components result in similar phenotypic consequences.
- Mol Cell Biol. 1996; 16: 6352-62
- Display abstract
spi1p of Schizosaccharomyces pombe is a structural homolog of the mammalian GTPase Ran. The distribution between the GTP- and GDP-bound forms of the protein is regulated by evolutionarily conserved gene products, rna1p and pim1p, functioning as GTPase-activating protein (GAP) and guanine nucleotide exchange factor (GEF), respectively. Antibodies to spi1p, pim1p, and rna1p were generated and used to demonstrate that pim1p is exclusively nuclear, while rna1p is cytoplasmic. A loss of pim1p GEF activity or an increase in the rna1p GAP activity correlates with a change in the localization of the GTPase from predominantly nuclear to uniformly distributed, suggesting that the two forms are topologically segregated and that the nucleotide-bound state of spi1p may dictate its intracellular localization. We demonstrate that the phenotype of cells overproducing the GAP resembles the previously reported phenotype of mutants with alterations in the GEF: the cells are arrested in the cell cycle as septated, binucleated cells with highly condensed chromatin, fragmented nuclear envelopes, and abnormally wide septa. Consistent with the expectation that either an increased dosage of the GAP or a mutation in the GEF would lead to an increase of the spi1p-GDP/spi1p-GTP ratio relative to that of wild-type cells, overexpression of the GAP together with a mutation in the GEF is synthetically lethal. The similar phenotypic consequences of altering the functioning of the nuclear GEF or the cytoplasmic GAP suggest that there is a single pool of the spi1p GTPase that shuttles between the nucleus and the cytoplasm. Phenotypically, rna1 null mutants, in which spi1p-GTP would be expected to accumulate, resemble pim1(ts) and rna1p-overproducing cells, in which spi1p-GDP would be expected to accumulate. Taken together, these results support the hypothesis that the balance between the GDP- and GTP-bound forms of spi1p mediates the host of nuclear processes that are adversely affected when the functioning of different components of this system is perturbed in various organisms.
- Schlenstedt G
- Protein import into the nucleus.
- FEBS Lett. 1996; 389: 75-9
- Display abstract
The transport of proteins from the cytoplasm into the nucleus is a multistep process. The nuclear localization sequence (NLS) of a transport substrate associates with the heterodimeric NLS-receptor which binds to a subset of proteins of the nuclear pore complex (NPC). Translocation through the NPC is energy-dependent and requires the small GTPase Ran. Proteins that interact with Ran in either the GDP-bound or the GTP-bound state coordinate transfer through the NPC. Lastly, the NLS-receptor/ substrate complex and Ran reach the nuclear side of the NPC where the complex disassembles.
- Weis K, Dingwall C, Lamond AI
- Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities.
- EMBO J. 1996; 15: 7120-8
- Display abstract
The small nuclear GTP binding protein Ran is required for transport of nuclear proteins through the nuclear pore complex (NPC). Although it is known that GTP hydrolysis by Ran is essential for this reaction, it has been unclear whether additional energy-consuming steps are also required. To uncouple the energy requirements for Ran from other nucleoside triphosphatases, we constructed a mutant derivative of Ran that has an altered nucleotide specificity from GTP to xanthosine 5' triphosphate. Using this Ran mutant, we demonstrate that nucleotide hydrolysis by Ran is sufficient to promote efficient nuclear protein import in vitro. Under these conditions, protein import could no longer be inhibited with non-hydrolysable nucleotide analogues, indicating that no Ran-independent energy-requiring steps are essential for the protein translocation reaction through the NPC. We further provide evidence that nuclear protein import requires Ran in the GDP form in the cytoplasm. This suggests that a coordinated exchange reaction from Ran-GDP to Ran-GTP at the pore is necessary for translocation into the nucleus.
- Floer M, Blobel G
- The nuclear transport factor karyopherin beta binds stoichiometrically to Ran-GTP and inhibits the Ran GTPase activating protein.
- J Biol Chem. 1996; 271: 5313-6
- Display abstract
The heterodimeric karyopherin functions in targeting a nuclear localization sequence (NLS)-containing protein to the nuclear pore complex followed by Ran-GTP and p10-mediated translocation of the NLS protein into the nucleoplasm. It was shown recently that Ran-GTP dissociated the karyopherin heterodimer and, in doing so, associated with karyopherin beta (Rexach, M., and Blobel, G. (1995) Cell 83, 683-692). We show here, using all recombinant yeast proteins expressed in Escherichia coli, that karyopherin beta binds to Ran-GTP and inhibits GTP hydrolysis stimulated by RanGAP (the Ran-specific GTPase activating protein). Inhibition of RanGAP-stimulated GTP hydrolysis by karyopherin beta was dependent on karyopherin beta concentration relative to Ran-GTP. Complete inhibition of RanGAP was observed at karyopherin beta concentrations that were equimolar to Ran-GTP. In gel filtration experiments, we found Ran-GTP and karyopherin beta to form a stoichiometric complex. Ran-GDP bound only weakly to karyopherin beta. We propose that stoichiometric complex formation between karyopherin beta and Ran-GTP renders Ran-GTP inaccessible to RanGAP.
- Palacios I, Weis K, Klebe C, Mattaj IW, Dingwall C
- RAN/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus.
- J Cell Biol. 1996; 133: 485-94
- Display abstract
Kinetic competition experiments have demonstrated that at least some factors required for the nuclear import of proteins and U snRNPs are distinct. Both import processes require energy, and in the case of protein import, the energy requirement is known to be at least partly met by GTP hydrolysis by the Ran GTPase. We have compared the effects of nonhydrolyzable GTP analogues and two mutant Ran proteins on the nuclear import of proteins and U snRNPs in vitro. The mutant Ran proteins have different defects; Q69L (glutamine 69 changed to leucine) is defective in GTP hydrolysis while T24N (threonine 24 changed to asparagine) is defective in binding GTP. Both protein and snRNP import are sensitive either to the presence of the two mutant Ran proteins, which act as dominant negative inhibitors of nuclear import, or to incubation with nonhydrolyzable GTP analogues. This demonstrates that there is a requirement for a GTPase activity for the import of U snRNPs, as well as proteins, into the nucleus. The dominant negative effects of the two mutant Ran proteins indicate that the pathways of protein and snRNP import share at lease one common component.
- Marshallsay C, Dickmanns A, Bischoff FR, Ponstingl H, Fanning E, Luhrmann R
- In vitro and in vivo evidence that protein and U1 snRNP nuclear import in somatic cells differ in their requirement for GTP-hydrolysis, Ran/TC4 and RCC1.
- Nucleic Acids Res. 1996; 24: 1829-36
- Display abstract
GTP-hydrolysis, the small ras-related GTP-binding protein Ran and its cognate guanosine nucleotide exchange factor, the RCC1 gene product, have recently been identified as essential components of the protein nuclear import pathway. In this report we use three independent approaches to investigate the role of these components in U1 snRNP nuclear import in somatic cells. (i) Using a somatic cell based in vitro nuclear import system we show that U1 snRNP nuclear import, in marked contrast to protein transport, is not significantly inhibited by non-hydrolyzable GTP-analogs and is therefore unlikely to require GTP-hydrolysis. (ii) Using the dominant negative Ran mutant RanQ69L, which is defective in GTP-hydrolysis, we show that Ran-mediated GTP-hydrolysis is not essential for the nuclear import of U1 snRNP in microinjected cultured cells. (iii) Using a cell line expressing a thermolabile RCC1 gene product, we show that the nuclear accumulation of microinjected U1 snRNP is not significantly affected by RCC1 depletion at the non-permissive temperature, indicating that RCC1 function is not essential for U-snRNP nuclear import. Based on these observations we conclude that protein and U-snRNP nuclear import in somatic cells differ in their requirements for GTP-hydrolysis, and Ran or RCC1 function. Based on these results, the substrates for nucleocytoplasmic exchange across the NPC can be divided into two classes, those absolutely requiring Ran, including protein import and mRNA export, and those for which Ran is not essential, including U-snRNP nuclear import, together with tRNA and U1 snRNA nuclear export.
- Saitoh H, Cooke CA, Burgess WH, Earnshaw WC, Dasso M
- Direct and indirect association of the small GTPase ran with nuclear pore proteins and soluble transport factors: studies in Xenopus laevis egg extracts.
- Mol Biol Cell. 1996; 7: 1319-34
- Display abstract
Ran is a small GTPase that is required for protein import, mRNA export, and the maintenance of nuclear structures. To gain a better understanding of Ran's role in the nucleus, we have sought to use Xenopus egg extracts for the purification and characterization of proteins from egg extracts bound with a high affinity to a glutathione-S-transferase-Ran fusion protein (GST-Ran). We found that GST-Ran associates specifically with at least 10 extract proteins. We determined the identifies of six Ran-interacting proteins (Rips), and found that they include RanBP2/Nup358, Nup153, Importin beta, hsc70, RCC1, and RanBP1. On the basis of peptide sequence, a seventh Rip (p88) seems to be similar but not identical to Fug1/RanGAP1, the mammalian Ran-GTPase-activating protein. Gel filtration analysis of endogenous extract proteins suggests that Importin beta acts as a primary GTP-Ran effector. Both Ran and Importin beta are coimmunoprecipitated by anti-p340RanBP2 antibodies in the presence of nonhydrolyzable GTP analogues, suggesting that Ran-Importin beta complexes interact with p340RanBP2. Two other Rips, p18 and p88, are coprecipitated with p340RanBP2 in a nucleotide-independent manner. Analysis of the Ran-GTPase pathway in Xenopus extracts allows the examination of interactions between Ran-associated proteins under conditions that resemble in vivo conditions more closely than in assays with purified components, and it thereby allows additional insights into the molecular mechanism of nuclear transport.
- Saitoh H, Dasso M
- The RCC1 protein interacts with Ran, RanBP1, hsc70, and a 340-kDa protein in Xenopus extracts.
- J Biol Chem. 1995; 270: 10658-63
- Display abstract
RCC1 is an abundant, highly conserved, chromatin-associated protein whose function is necessary for the preservation of a properly ordered cell cycle. RCC1 is also necessary for numerous nuclear processes, including nuclear transport and RNA metabolism; and it functions enzymatically as a guanine nucleotide exchange factor for a small, ras-related GTPase called Ran. Studies in several organisms suggest that RCC1 may be part of a large complex containing multiple proteins. There is also evidence that RCC1 associates with chromatin through other proteins and that the binding of the complex to chromatin varies within the cell cycle. In order to characterize this putative complex, we have identified a number of other proteins as candidate components of the complex by their association with a GST-RCC1 fusion protein. Three of these proteins have previously been identified (Ran, RanBP1, and hsc70). The fourth protein is novel and has a molecular mass of 340 kDa. In this report, we discuss a preliminary characterization of the interactions between these proteins.
- Demeter J, Morphew M, Sazer S
- A mutation in the RCC1-related protein pim1 results in nuclear envelope fragmentation in fission yeast.
- Proc Natl Acad Sci U S A. 1995; 92: 1436-40
- Display abstract
Members of the RCC1 protein family are chromatin-associated guanine nucleotide exchange factors that have been implicated in diverse cellular processes in various organisms, yet no consensus has been reached as to their primary biological role. The fission yeast Schizosaccharomyces pombe, a single-celled eukaryote, provides an in vivo system in which to study the RCC1/Ran switch by using a temperature-sensitive mutant in the RCC1-related protein pim1. Mitotic entry in the pim1-d1ts mutant is normal, but mitotic exit leads to the accumulation of cells arrested with a medial septum and condensed chromosomes. Although the yeast nuclear envelope normally remains intact throughout the cell cycle, we found a striking fragmentation of the nuclear envelope in the pim1-d1ts mutant following mitosis. This resulted in chromatin that was no longer compartmentalized and an accumulation of pore-containing membranes in the cytoplasm. The development of this terminal phenotype was dependent on the passage of cells through mitosis and was coincident with the loss of viability. We propose that pim1 is required for the reestablishment of nuclear structure following mitosis in fission yeast.
- Moore MS, Blobel G
- Soluble factors required for nuclear protein import.
- Cold Spring Harb Symp Quant Biol. 1995; 60: 701-5
- Bischoff FR, Ponstingl H
- Catalysis of guanine nucleotide exchange of Ran by RCC1 and stimulation of hydrolysis of Ran-bound GTP by Ran-GAP1.
- Methods Enzymol. 1995; 257: 135-44
- Klebe C, Prinz H, Wittinghofer A, Goody RS
- The kinetic mechanism of Ran--nucleotide exchange catalyzed by RCC1.
- Biochemistry. 1995; 34: 12543-52
- Display abstract
The interaction of Ran, a Ras-related nuclear GTP-binding protein, with its guanine nucleotide exchange factor RCC1 has been studied by equilibrium and transient kinetic measurements using fluorescent nucleotides. The four-step mechanism of catalyzed nucleotide exchange involves the formation of ternary complexes consisting of Ran, RCC1, and GXP as well as a nucleotide-free dimeric Ran.RCC1 complex. This model is sufficient to describe all experimental data obtained, so that no additional reaction steps must be assumed. All the rate and equilibrium constants for the four-step mechanism have been determined either experimentally or from a simultaneous theoretical fit to all experimental data sets. The affinities of RCC1 to Ran.GDP and Ran.GTP are similar (1.3 x 10(5) and 1.8 x 10(5) M-1, respectively) and are high enough to allow formation of the ternary complex under appropriate concentration conditions. In the absence of excess nucleotide and at low Ran concentrations, GDP (or GTP) can be efficiently displaced by excess RCC1 and the ternary complex can be produced. The affinities of both nucleotides (GDP or GTP) to Ran in the corresponding ternary complexes are reduced by orders of magnitude in comparison with the respective binary complexes. The reduction of affinity of both nucleotides in the ternary complexes leads to a dramatic increase in the dissociation rate constants by similar orders of magnitude (from 1.5 x 10(-5) s(-1) to 21 s(-1) for GDP) and thus to facilitated nucleotide exchange. The quantitative results of the kinetic analysis suggest that the exchange reaction does not per se favor the formation of the Ran.GTP complex, but rather accelerates the formation of the equilibrium dictated by the relative affinities of Ran for GDP/GTP and the respective concentrations of the nucleotide in the cell. The extent of Ran.GTP formation in vivo can be calculated using the constants derived.
- Gorlich D, Vogel F, Mills AD, Hartmann E, Laskey RA
- Distinct functions for the two importin subunits in nuclear protein import.
- Nature. 1995; 377: 246-8
- Display abstract
The import of nuclear proteins proceeds through the nuclear pore complex and requires nuclear localization signals (NLSs), energy and soluble factors, namely importin-alpha (M(r) 60K), importin-beta (90K) and Ran. Importin-alpha is primarily responsible for NLS recognition and is a member of a protein family that includes the essential yeast nuclear pore protein SRP1p (ref. 16). As the first event, the complex of importin-alpha and importin-beta binds the import substrate in the cytosol. Here we show that this nuclear pore targeting complex initially docks as a single entity to the nuclear pore via importin-beta. Then the energy-dependent, Ran-mediated translocation through the pore results in the accumulation of import substrate and importin-alpha in the nucleus. In contrast, importin-beta accumulates at the nuclear envelope, but not in the nucleoplasm. Immunoelectron microscopy detects importin-beta on both sides of the nuclear pore. This suggests that the nuclear pore targeting complex might move as a single entity from its initial docking site through the central part of the nuclear pore before it disassembles on the nucleoplasmic side.
- Cheng Y, Dahlberg JE, Lund E
- Diverse effects of the guanine nucleotide exchange factor RCC1 on RNA transport.
- Science. 1995; 267: 1807-10
- Display abstract
Transport of RNAs within nuclei and through nuclear pore complexes (NPCs) are essential, but poorly understood, steps in gene expression. In experiments with mammalian cells, RCC1, the abundant nuclear guanine nucleotide exchange factor for the guanosine triphosphatase Ran/TC4, was shown to be required for nucleocytoplasmic transport of precursors of spliceosomal small nuclear RNAs (snRNAs), intranuclear transport of U3 snRNA, and processing of ribosomal RNAs, but not for export of transfer RNAs. It is proposed that guanosine triphosphate (GTP)-bound Ran/TC4 associates with ribonucleoprotein particles (RNPs) during intranuclear movement, and that GTP hydrolysis promotes deposition of RNPs at targeted sites such as NPCs or nucleoli.
- Dasso M
- The role of the Ran GTPase pathway in cell cycle control and interphase nuclear functions.
- Prog Cell Cycle Res. 1995; 1: 163-72
- Display abstract
Ran is a small, highly abundant, nuclear GTPase. Mutants in Ran and in proteins that interact with it disrupt the normal checkpoint control of mitosis with respect to the completion of DNA synthesis. Ran and other components of this pathway are also required for numerous nuclear functions such as RNA export, protein import, RNA processing and DNA replication. It will be important to understand how these facets of Ran's activities are linked and how they promote correct control of the cell cycle. This review examines recent progress in discovering other components of the Ran GTPase pathway and considers how this pathway may be required for the control of the cell cycle.
- Corbett AH, Koepp DM, Schlenstedt G, Lee MS, Hopper AK, Silver PA
- Rna1p, a Ran/TC4 GTPase activating protein, is required for nuclear import.
- J Cell Biol. 1995; 130: 1017-26
- Display abstract
The Saccharomyces cerevisiae gene, RNA1, encodes a protein with extensive homology to the mammalian Ran/TC4 GTPase activating protein. Using indirect immunofluorescence microscopy, we have demonstrated that rna1-1 mutant cells are defective in nuclear import of several proteins. The same result is obtained when nuclear import is examined in living cells using a nuclear protein fused to the naturally green fluorescent protein. These findings suggest a role for the Rna1p in trafficking of proteins across the nuclear membrane. To investigate this role more directly, an in vitro import assay that monitors the import of a fluorescently labeled substrate into the nuclei of semi-intact yeast cells was used. Import to the nucleus requires the addition of exogenous cytosol. Results indicate that, in contrast to wild-type cytosols, extracts made from rna1-1 mutant cells are unable to support import of the fluorescently labeled substrate into competent nuclei. Immunoblotting demonstrates that these mutant-derived extracts are depleted of Rna1p. However, when purified Rna1p is added back to these extracts the import activity is restored in a dose-dependent manner. These results demonstrate that Rna1p plays a direct role in the import of proteins into the nucleus.
- Richards SA, Lounsbury KM, Macara IG
- The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1.
- J Biol Chem. 1995; 270: 14405-11
- Display abstract
Ran/TC4 is a member of the Ras superfamily of GTPases. It is unusual in being predominantly nuclear and because it possesses an acidic -DEDDDL sequence instead of a consensus prenylation domain at the C terminus. Ran is required for nuclear protein import and cell cycle progression, and has been implicated in mRNA processing and export and DNA replication. The inhibition of cell cycle progression by a dominant gain-of-function mutant of Ran has been shown to be abrogated by removal of the -DEDDDL sequence, suggesting that this domain is essential for Ran function. We demonstrate here that the -DEDDDL sequence stabilizes GDP binding to Ran, and that the domain is required for high affinity interaction with a Ran-binding protein, HTF9A/RanBP1. HTF9A functions as a co-stimulator of Ran-GAP (GTPase activating protein) activity on wild-type Ran, but in the absence of the acidic C terminus of Ran, HTF9A behaves as a Ran-GAP inhibitor. An antibody directed against the C-terminal region preferentially recognizes the GTP-bound form of Ran, suggesting that this domain undergoes a nucleotide-dependent conformational change. The results suggest that the acidic C-terminal domain is important in modulating the interaction of Ran with regulatory factors, and implicate Ran-binding proteins in mediating the effects of Ran on cell cycle progression.
- Schlenstedt G, Wong DH, Koepp DM, Silver PA
- Mutants in a yeast Ran binding protein are defective in nuclear transport.
- EMBO J. 1995; 14: 5367-78
- Display abstract
Ran, a Ras-like GTPase, has been implicated in controlling the movement of proteins and RNAs in and out of the nucleus. We have constructed strains of Saccharomyces cerevisiae which produce fusion proteins containing glutathione-S-transferase (GST) fused to Gsp1p, which encodes the essential yeast Ran homolog, and a mutant form of Gsp1p that mimics the GTP-bound state. A major protein with the apparent size of 34 kDa co-purifies with the GTP-bound form of Gsp1p. This protein was identified as Yrb1p (Yeast Ran Binding Protein) and stimulates GTP hydrolysis by Gsp1p in the presence of Rna1p, the Gsp1 GTPase activating protein. Yrb1p is located in the cytoplasm with some concentration at the nuclear periphery. Temperature-sensitive yrb1 mutants are defective in nuclear protein import and RNA export. A mutation in the highly conserved Ran binding region of Yrb1p reduces its ability to interact with Gsp1p. These data indicate that Yrb1p functions with Gsp1p and suggest that together they can control transport of macromolecules across the nuclear envelope.
- Melchior F, Gerace L
- Mechanisms of nuclear protein import.
- Curr Opin Cell Biol. 1995; 7: 310-8
- Display abstract
The past two years have seen a significant increase in our understanding of nuclear protein import. Five cytosolic import factors have been identified, two of which have been shown to directly interact with components of the nuclear pore complex. These findings enable refinement of previous models for steps in the nuclear import pathway, and provide a framework for future research.
- Moore MS
- Nuclear pores: David and Goliath in nuclear transport.
- Curr Biol. 1995; 5: 1339-41
- Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E
- Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region.
- J Biol Chem. 1995; 270: 14209-13
- Display abstract
The Ras-related nuclear protein, Ran, has been implicated in nuclear transport. By screening a HeLa cell lambda expression library with Ran-GTP and sequencing overlapping cDNA clones, we have obtained the derived primary structure of a protein with a calculated molecular mass of 358 kDa. Using antibodies raised against an expressed segment of this protein, we obtained punctate nuclear surface staining by immunofluorescence microscopy that is characteristic for nucleoporins. Electron microscopy of immunogold-decorated rat liver nuclear envelopes sublocalized the 358-kDa protein at (or near) the tip of the cytoplasmic fibers of the nuclear pore complex (NPC). In agreement with current convention, this protein was therefore termed Nup358 (for nucleoporin of 358 kDa). Nup358 contains a leucine-rich region, four potential Ran binding sites (i.e. Ran binding protein 1 homologous domains) flanked by nucleoporin-characteristic FXFG or FG repeats, eight zinc finger motifs, and a C-terminal cyclophilin A homologous domain. Consistent with the location of Nup358 at the cytoplasmic fibers of the NPC, we found decoration with Ran-gold at only the cytoplasmic side of the NPC. Thus, Nup358 is the first nucleoporin shown to contain binding sites for two of three soluble nuclear transport factors so far isolated, namely karyopherin and Ran-GTP.
- Hattori M et al.
- Molecular cloning of a novel mitogen-inducible nuclear protein with a Ran GTPase-activating domain that affects cell cycle progression.
- Mol Cell Biol. 1995; 15: 552-60
- Display abstract
We have cloned a novel cDNA (Spa-1) which is little expressed in the quiescent state but induced in the interleukin 2-stimulated cycling state of an interleukin 2-responsive murine lymphoid cell line by differential hybridization. Spa-1 mRNA (3.5 kb) was induced in normal lymphocytes following various types of mitogenic stimulation. In normal organs it is preferentially expressed in both fetal and adult lymphohematopoietic tissues. A Spa-1-encoded protein of 68 kDa is localized mostly in the nucleus. Its N-terminal domain is highly homologous to a human Rap1 GTPase-activating protein (GAP), and a fusion protein of this domain (SpanN) indeed exhibited GAP activity for Rap1/Rsr1 but not for Ras or Rho in vitro. Unlike the human Rap1 GAP, however, SpanN also exhibited GAP activity for Ran, so far the only known Ras-related GTPase in the nucleus. In the presence of serum, stable Spa-1 cDNA transfectants of NIH 3T3 cells (NIH/Spa-1) hardly overexpressed Spa-1 (p68), and they grew as normally as did the parental cells. When NIH/Spa-1 cells were serum starved to be arrested in the G1/G0 phase of the cell cycle, however, they, unlike the control cells, exhibited progressive Spa-1 p68 accumulation, and following the addition of serum they showed cell death resembling mitotic catastrophes of the S phase during cell cycle progression. The results indicate that the novel nuclear protein Spa-1, with a potentially active Ran GAP domain, severely hampers the mitogen-induced cell cycle progression when abnormally and/or prematurely expressed. Functions of the Spa-1 protein and its regulation are discussed in the context of its possible interaction with the Ran/RCC-1 system, which is involved in the coordinated nuclear functions, including cell division.
- Moroianu J, Blobel G
- Protein export from the nucleus requires the GTPase Ran and GTP hydrolysis.
- Proc Natl Acad Sci U S A. 1995; 92: 4318-22
- Display abstract
Nuclei of digitonin-permeabilized cells that had been preloaded with a model transport substrate in a cytosol-dependent import reaction were subsequently incubated to investigate which conditions would result in export of transport substrate. We found that up to 80% of the imported substrate was exported when recombinant human Ran and GTP were present in the export reaction. Ran-mediated export was inhibited by nonhydrolyzable GTP analogs and also by wheat germ agglutinin but was unaffected by a nonhydrolyzable ATP analog. Moreover, a recombinant human Ran mutant that was deficient in its GTPase activity inhibited export. These data indicate that export of proteins from the nucleus requires Ran and GTP hydrolysis but not ATP hydrolysis. We also found that digitonin-permeabilized cells were depleted of their endogenous nuclear Ran, thus allowing detection of Ran as a limiting factor for export. In contrast, most endogenous karyopherin alpha was retained in nuclei of digitonin-permeabilized cells. Unexpectedly, exogenously added, fluorescently labeled Ran, although it accessed the nuclear interior, was found to dock at the nuclear rim in a punctate pattern, suggesting the existence of Ran-binding sites at the nuclear pore complex.
- Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H
- Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1.
- EMBO J. 1995; 14: 705-15
- Display abstract
RCC1 (the regulator of chromosome condensation) stimulates guanine nucleotide dissociation on the Ras-related nuclear protein Ran. Both polypeptides are components of a regulatory pathway that has been implicated in regulating DNA replication, onset of and exit from mitosis, mRNA processing and transport, and import of proteins into the nucleus. In a search for further members of the RCC1-Ran signal pathway, we have identified proteins of 23, 45 and 300 kDa which tightly bind to Ran-GTP but not Ran-GDP. The purified soluble 23 kDa Ran binding protein RanBP1 does not activate RanGTPase, but increases GTP hydrolysis induced by the RanGTPase-activating protein RanGAP1 by an order of magnitude. In the absence of RanGAP, it strongly inhibits RCC1-induced exchange of Ran-bound GTP. In addition, it forms a stable complex with nucleotide-free RCC1-Ran. With these properties, it differs markedly from guanine diphosphate dissociation inhibitors which preferentially prevent the exchange of protein-bound GDP and in some cases were shown to inhibit GAP-induced GTP hydrolysis. RanBP1 is the first member of a new class of proteins regulating the binding and hydrolysis of GTP by Ras-related proteins.
- Melen K, Julkunen I
- Mutational analysis of murine Mx1 protein: GTP binding core domain is essential for anti-influenza A activity.
- Virology. 1994; 205: 269-79
- Display abstract
Interferon-induced resistance to influenza virus in murine cells is mediated by the Mx1 protein, which inhibits viral mRNA synthesis in the nucleus. Murine Mx1 protein is a GTPase specifically targeted into the cell nucleus and it has a C-terminal leucine zipper domain that mediates its oligomerization. In order to determine functionally important elements of the protein we created several substitution, linker insertion, and deletion mutants of murine Mx1 protein. The antiviral activity of mutant Mx1 proteins was analyzed by a transient transfection/influenza A infection assay in COS cells by indirect immunofluorescence. Mx1 proteins carrying mutations in the vicinity or within the consensus GTP binding elements exhibited markedly reduced, but not completely lost, antiviral activity. Baculovirus produced, GTP binding element substitution mutant Mx1 proteins showed very low (< 10%) GTPase activity as compared to wild-type Mx1 protein. Mutations in other portions of the molecule had less effect on antiviral activity, except one mutant, which was situated six amino acids from the C-terminal end. This mutation evidently interrupted the nuclear localization signal rendering the protein cytoplasmic and clearly reduced the anti-influenza activity. Deletions of various sizes and locations further suggested that the N-terminal half of the molecule is more important in the antiviral activity than other regions of the molecule. These results indicate that the GTP binding domain of Mx1 protein is essential for its anti-influenza activity, correlating to the low GTPase activity of the GTP binding element substitution mutants, but other portions of the molecule such as the leucine zipper and the nuclear localization signal are of importance, too.
- Moore MS, Blobel G
- A G protein involved in nucleocytoplasmic transport: the role of Ran.
- Trends Biochem Sci. 1994; 19: 211-6
- Display abstract
Ran is the only known member of the Ras superfamily of small GTP-binding proteins to be localized primarily inside the nucleus. Recently, Ran was unexpectedly identified as one of the soluble factors required for nuclear import. As this protein has also been implicated in RNA export, nuclear import and export may be more closely related than previously thought, with Ran playing a key role in each.
- Chen LM, Chern Y, Ong SJ, Tai JH
- Molecular cloning and characterization of a ras-related gene of ran/tc4/spi1 subfamily in Giardia lamblia.
- J Biol Chem. 1994; 269: 17297-304
- Display abstract
The significance of Ras-like proteins in the protozoa is relatively unexplored. In this report, a gene encoding a Ras-like nuclear (Ran) protein was identified in Giardia lamblia by a polymerase chain reaction-based cloning strategy. The sequence analyses suggest that the gene was intronless, and had short 5'-untranslated leader sequences in the corresponding mRNA up to -2, -4, or -29 bases upstream of the first initiation codon. The full-length cDNA sequence predicted a protein comprising 226 amino acids, in which the highly conserved functional motifs of the Ras superfamily were all preserved. This protein showed 52% identity to human TC4 and 50% identity to yeast Spi1 proteins, suggesting that it is closely related to the Ran proteins, and it was therefore designated gRan. gRan produced from recombinant Escherichia coli exhibited GTP binding activity by an overlay assay. In good agreement with the predicted size of gRan, a 27-kDa protein was identified in a lysate of G. lamblia by Western blotting using antiserum raised against recombinant gRan. The protein was further localized in both nuclei of G. lamblia by immunofluorescence staining. Recombinant gRan exhibited low affinity for GTP with a Kd value of 16.8 microM. The affinity was enhanced to a Kd value of 2.2 microM in the presence of 10 mM Mg2+. The intrinsic GTPase activity of gRan was observed only in the presence of 10 mM Mg2+ and had an estimated Km of 5.6 microM and a Kcat of 0.33/h. These observations demonstrate the presence of Ras-like proteins in the most primitive eukaryotic cells, G. lamblia, and infer that the Ran protein may play a functional role in the nuclei of this organism.
- Moore MS, Blobel G
- Purification of a Ran-interacting protein that is required for protein import into the nucleus.
- Proc Natl Acad Sci U S A. 1994; 91: 10212-6
- Display abstract
Previously we reported the isolation of two cytosolic fractions (A and B) from Xenopus ovary that are required sequentially to support protein import into the nuclei of digitonin-permeabilized cells. Fraction A is required for recognition of the nuclear localization sequence and targeting to the nuclear envelope, whereas fraction B is required for the subsequent translocation of the bound substrate into the nucleus. The first protein required for fraction B activity to be purified was the small GTPase Ran (ras-related nuclear protein). Here we report the purification of the second (and final) protein required for fraction B activity. By SDS/PAGE, the purified protein appeared as a single band with an apparent molecular mass of 10 kDa, but the native protein fractionated upon gel filtration chromatography with an apparent size of 30 kDa. Peptide sequence analysis indicated that the purified protein was highly homologous to a previously identified human protein of unknown function called placental protein 15 (pp15) and to the predicted protein product of a yeast open reading frame from Saccharomyces cerevisiae.
- Adam EJ, Adam SA
- Identification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope.
- J Cell Biol. 1994; 125: 547-55
- Display abstract
Nuclear protein import can be separated into two distinct steps: binding to the nuclear pore complex followed by translocation to the nuclear interior. A previously identified nuclear location sequence (NLS) receptor and a 97-kD protein purified from bovine erythrocytes reconstitute the binding step in a permeabilized cell assay. Binding to the envelope is specific for a functional SV-40 large T antigen NLS and is not ATP or temperature dependent. Modification of p97 with N-ethylmaleimide (NEM) decreases binding to the pore, but interestingly, NEM treatment of the NLS receptor does not. Nuclear envelope binding is inhibited by wheat germ agglutinin suggesting a possible mechanism for the inhibition of transport by the lectin.
- Dean DA, Kasamatsu H
- Signal- and energy-dependent nuclear transport of SV40 Vp3 by isolated nuclei. Establishment of a filtration assay for nuclear protein import.
- J Biol Chem. 1994; 269: 4910-6
- Display abstract
Nuclear transport signal (NTS)-containing proteins are transported into the nucleus through the nuclear pore complex by a mechanism that is not well understood. To better characterize the mechanisms of transport, we have established an homologous in vitro system using an NTS-containing structural protein of simian virus 40 (SV40) and isolated nuclei from cultured cells of its natural host. Isolated nuclei accumulated either fluorescently labeled SV40 Vp3-NTS peptide-BSA conjugates (NTSwt-BSA), as assayed cytochemically, or 125I-NTSwt-BSA, as assayed by filtration, in a signal- and ATP-dependent manner. Nuclear accumulation required nuclear membrane integrity and was inhibited by the lectin wheat germ agglutinin but not concanavalin A. Unlike several other systems, this system is not dependent on cytoplasmic extracts for the transport of SV40 proteins. NTSwt-BSA was transported with an apparent Km of 0.8 microM and Vmax of 0.8 nmol/min/10(*) nuclei. Thin section autoradiography confirmed the transport. This system faithfully reproduced what occurs in vivo: nuclear import of the SV40 capsid protein Vp3 was dependent on the presence of its functional NTS. Full-length Vp3, expressed as a glutathione S-transferase fusion protein, and a deletion mutant which retains its NTS, Vp3 delta C13, were transported by the nuclei but Vp3 delta C35, which lacks the NTS, and an NTS mutant, Vp3(202E/204T), were not transported.
- Ach RA, Gruissem W
- A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant.
- Proc Natl Acad Sci U S A. 1994; 91: 5863-7
- Display abstract
Ran is a 25-kDa Ras-related nuclear GTP-binding protein which is very highly conserved in humans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Ran has been found to form a stable, noncovalent complex with the chromatin-associated protein RCC1, a negative regulator of mitosis. In Sch. pombe, a temperature-sensitive mutation in the RCC1 homolog encoded by the pim1 gene causes premature induction of mitosis, and this mutation can be suppressed by overexpression of the Ran homolog encoded by spi1. We report here the cloning of three Ran cDNAs from tomato. The Ran protein is very highly conserved among plants, animals, and fungi. In tomato, Ran mRNA is expressed in all tissues examined, even those with little or no cell division, indicating that Ran in plants may have functions other than just control of mitosis. We have found that the tomato Ran protein can direct a beta-glucuronidase reporter protein to the plant cell nucleus, confirming that Ran is a nuclear protein in plants. We show that the tomato Ran protein can suppress the Sch. pombe pim1 mutation, indicating that the tomato Ran protein and the Sch. pombe spi1 protein are functionally homologous.
- Tachibana T, Imamoto N, Seino H, Nishimoto T, Yoneda Y
- Loss of RCC1 leads to suppression of nuclear protein import in living cells.
- J Biol Chem. 1994; 269: 24542-5
- Display abstract
The role of RCC1-Ran/TC4 in nuclear protein import was examined in living cells using a temperature-sensitive RCC1 mutant cell line, tsBN2, and tsBN2 transformed with a RCC1 cDNA lacking the nuclear localization sequence domain, delta 8-29. Substrate, containing a small number of SV40 T antigen nuclear localization sequence peptides, injected into the cytoplasm of tsBN2 cells cultured at the non-permissive temperature of 39.5 degrees C did not accumulate efficiently in the nucleus. When the same substrate was injected into the cytoplasm of heterokaryons of tsBN2 and wild type BHK21 cells, import efficiency into the tsBN2 nuclei was not restored. Import into the BHK21 nuclei gradually decreased after fusion. In contrast, import efficiency into tsBN2 nuclei gradually recovered after fusion with tsBN2 cells transformed with delta 8-29 in which functional RCC1 was diffusely distributed in both the nuclei and cytoplasm. Substrate did not accumulate in the nuclei of digitonin-permeabilized tsBN2 cells cultured at 39.5 degrees C even in the presence of normal cytosol. These results suggest that loss of RCC1 function leads to the decline of import competence of the nucleus and accumulation of a factor in the cytoplasm that suppresses nuclear import. These results indicate that the RCC1-Ran/TC4 system may regulate nuclear import.
- Kornbluth S, Dasso M, Newport J
- Evidence for a dual role for TC4 protein in regulating nuclear structure and cell cycle progression.
- J Cell Biol. 1994; 125: 705-19
- Display abstract
TC4, a ras-like G protein, has been implicated in the feedback pathway linking the onset of mitosis to the completion of DNA replication. In this report we find distinct roles for TC4 in both nuclear assembly and cell cycle progression. Mutant and wild-type forms of TC4 were added to Xenopus egg extracts capable of assembling nuclei around chromatin templates in vitro. We found that a mutant TC4 protein defective in GTP binding (GDP-bound form) suppressed nuclear growth and prevented DNA replication. Nuclear transport under these conditions approximated normal levels. In a separate set of experiments using a cell-free extract of Xenopus eggs that cycles between S and M phases, the GDP-bound form of TC4 had dramatic effects, blocking entry into mitosis even in the complete absence of nuclei. The effect of this mutant TC4 protein on cell cycle progression is mediated by phosphorylation of p34cdc2 on tyrosine and threonine residues, negatively regulating cdc2 kinase activity. Therefore, we provide direct biochemical evidence for a role of TC4 in both maintaining nuclear structure and in the signaling pathways that regulate entry into mitosis.
- Kempf T, Bischoff FR, Kalies I, Ponstingl H
- Isolation of human NuMA protein.
- FEBS Lett. 1994; 354: 307-10
- Display abstract
NuMA is a protein involved in maintenance of nuclear structure and in the assembly of the mitotic spindle. Expression of amino-terminal deletion mutants results in a phenotype identical to that caused by a temperature-sensitive defect of RCC1 (regulator of chromosome condensation). Here we describe the isolation of NuMA protein from HeLa cells under mild conditions as a prerequisite to study its interactions with elements of the RCC1-Ran regulatory pathway. In an overlay assay, NuMA did not bind Ran.[gamma-32P]GTP. Thus it is clearly different from Ran.GTP binding proteins of similar M(r).
- Lounsbury KM, Beddow AL, Macara IG
- A family of proteins that stabilize the Ran/TC4 GTPase in its GTP-bound conformation.
- J Biol Chem. 1994; 269: 11285-90
- Display abstract
Ran/TC4, referred to here as Ran1, is a 25-kilodalton nuclear GTP-binding protein with an acidic C terminus that lacks any consensus prenylation sites. Here, we use a nitrocellulose overlay assay to identify potential effector proteins that bind specifically and with high affinity to the GTP-bound form of Ran1. GTP-Ran1 is shown to bind a variety of proteins, present in many eukaryotic tissues and cell extracts. A 28-kDa protein is cytosolic, whereas others, consisting of proteins of 86-300 kDa, are primarily localized in the nucleus. Binding is highly specific and is not detected by other small GTPases, such as c-Ha-Ras or Rab3A. Both deletion of the C-terminal-DEDDDL acidic sequence or alteration of the N terminus of Ran1 inhibits binding. However, these altered forms of Ran1 maintain the capacity to bind guanyl nucleotides and interact with the nucleotide exchange factor. The Ran1-binding proteins potently inhibit release of GTP from Ran1. These proteins can therefore maintain Ran1 in the "on" state and are potential down-stream effectors for Ran1-dependent cellular processes.
- Dasso M, Seki T, Azuma Y, Ohba T, Nishimoto T
- A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation.
- EMBO J. 1994; 13: 5732-44
- Display abstract
The Ran protein is a small GTPase that has been implicated in a large number of nuclear processes including transport. RNA processing and cell cycle checkpoint control. A similar spectrum of nuclear activities has been shown to require RCC1, the guanine nucleotide exchange factor (GEF) for Ran. We have used the Xenopus laevis egg extract system and in vitro assays of purified proteins to examine how Ran or RCC1 could be involved in these numerous processes. In these studies, we employed mutant Ran proteins to perturb nuclear assembly and function. The addition of a bacterially expressed mutant form of Ran (T24N-Ran), which was predicted to be primarily in the GDP-bound state, profoundly disrupted nuclear assembly and DNA replication in extracts. We further examined the molecular mechanism by which T24N-Ran disrupts normal nuclear activity and found that T24N-Ran binds tightly to the RCC1 protein within the extract, resulting in its inactivation as a GEF. The capacity of T24N-Ran-blocked interphase extracts to assemble nuclei from de-membranated sperm chromatin and to replicate their DNA could be restored by supplementing the extract with excess RCC1 and thereby providing excess GEF activity. Conversely, nuclear assembly and DNA replication were both rescued in extracts lacking RCC1 by the addition of high levels of wild-type GTP-bound Ran protein, indicating that RCC1 does not have an essential function beyond its role as a GEF in interphase Xenopus extracts.
- Moore MS, Blobel G
- The GTP-binding protein Ran/TC4 is required for protein import into the nucleus.
- Nature. 1993; 365: 661-3
- Display abstract
Two cytosolic fractions (A and B) from Xenopus oocytes are sufficient to support protein import into the nuclei of digitonin-permeabilized cells. Fraction A recognizes the nuclear localization sequence (NLS) and binds the import substrate to the nuclear envelope, whereas fraction B mediates the subsequent passage of the bound substrate into the nucleus. Here we report that two interacting components are required for full fraction-B activity, purify one of these components to homogeneity, and show that it is the highly abundant GTP-binding protein Ran (Ras-related nuclear protein)/TC4.
- Klebe C, Nishimoto T, Wittinghofer F
- Functional expression in Escherichia coli of the mitotic regulator proteins p24ran and p45rcc1 and fluorescence measurements of their interaction.
- Biochemistry. 1993; 32: 11923-8
- Display abstract
The gene products for the mitotic regulator genes RCC1 and Ran, p45rcc1 and p24ran, were expressed in Escherichia coli, purified in large amounts, and characterized for their biochemical properties. p24ran binds guanine nucleotide as a 1:1 complex, which is only slowly released from the protein. p45rcc1 catalyzes the exchange of nucleotide bound to the guanine nucleotide binding protein p24ran in the same way as the protein purified from HeLa cells. Likewise, the nucleotide dissociation from HeLa cell-derived p24ran protein is equally efficient with recombinant and nonrecombinant proteins. The recombinant proteins form a strong complex which contains no bound nucleotide. The kinetics of nucleotide exchange on p24ran in the presence or absence of p45rcc1 can be conveniently monitored either by the direct tryptophan fluorescence of p24ran or by fluorescence energy transfer measurements involving fluorescent nucleotides.
- Finch RA, Revankar GR, Chan PK
- Nucleolar localization of nucleophosmin/B23 requires GTP.
- J Biol Chem. 1993; 268: 5823-7
- Display abstract
Incubation of HeLa cells with the IMP dehydrogenase inhibitors: ribavirin (100 microM, 4 h), tiazofurin (100 microM, 4 h), selenazofurin (100 microM, 4 h), or mycophenolic acid (10 microM, 4 h) resulted in approximately 70% reduction in cellular GTP pools and shifting of nucleophosmin/B23 from nucleoli to nucleoplasm as detected by immunofluorescence (B23-translocation). Enzyme-linked immunosorbent assay and Western blot assay showed there is no loss or degradation of nucleophosmin/B23 protein during drug treatment. This translocation effect could be prevented by co-incubation with guanosine (100 microM) or reversed by addition of guanosine (100 microM) to the culture medium after B23-translocation had been induced by these inhibitors. Under these conditions of guanosine supplementation, cellular GTP pool concentrations were maintained at the control level. These results indicate that localization of nucleophosmin/B23 into the nucleolus is dependent on the cellular GTP level.
- Melchior F, Paschal B, Evans J, Gerace L
- Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor.
- J Cell Biol. 1993; 123: 1649-59
- Display abstract
We have investigated a possible involvement of GTPases in nuclear protein import using an in vitro transport system involving digitonin-permeabilized cells supplemented with exogenous cytosol. Transport in this system was measured with a novel ELISA-based assay that allows rapid quantitative analysis. GTP gamma S and other nonhydrolyzable analogues of GTP were found to rapidly inhibit the rate of in vitro nuclear import. Transport inhibition by GTP gamma S was dependent on the concentrations of permeabilized cells and cytosol, and was strongly enhanced by a cytosolic factor(s). The predominant cytosolic component responsible for this inhibition was found in a 20-30-kD fraction in molecular sieving chromatography. Furthermore, a component(s) of this 20-30-kD fraction was itself required for efficient nuclear import. Biochemical complementation with bacterially expressed protein demonstrated that this essential GTP gamma S-sensitive transport factor was Ran/TC4, a previously described GTPase of the Ras superfamily found in both nucleus and cytoplasm. Ran/TC4 and its guanine nucleotide release protein RCC1 have previously been implicated in DNA replication, cell cycle checkpoint control, and RNA synthesis, processing and export. Our results suggest that Ran/TC4 serves to integrate nuclear protein import with these other nuclear activities.
- Bischoff FR, Ponstingl H
- Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide.
- Proc Natl Acad Sci U S A. 1991; 88: 10830-4
- Display abstract
We previously reported the purification of a complex of two proteins from human chromatin, consisting of a 47-kDa component called RCC1, which is a negative regulator of mitosis, and a 25-kDa protein. Here we show that the 25-kDa protein has a ras-related sequence. It binds guanine nucleotides, and excess Mg2+ and GDP or GTP dissociate the complex. Immunofluorescence studies and biochemical properties indicate that this polypeptide, in contrast to most members of the Ras family, is present in the nucleoplasm as a soluble monomer, in 25-fold excess over the complexed form. We designate this polypeptide Ran, for ras-related nuclear protein.