Large GTPases that mediate vesicle trafficking. Dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event.
Membrane transport between compartments in eukaryotic cells requires proteins that allow the budding and scission of nascent cargo vesicles from one compartment and their targeting and fusion with another. Dynamins are large GTPases that belong to a protein superfamily [ (PUBMED:15040446) ] that, in eukaryotic cells, includes classical dynamins, dynamin-like proteins, OPA1, Mx proteins, mitofusins and guanylate-binding proteins/atlastins [ (PUBMED:2142876) (PUBMED:2112425) (PUBMED:1532158) (PUBMED:2607176) ], and are involved in the scission of a wide range of vesicles and organelles. They play a role in many processes including budding of transport vesicles, division of organelles, cytokinesis and pathogen resistance.
The minimal distinguishing architectural features that are common to all dynamins and are distinct from other GTPases are the structure of the large GTPase domain (300 amino acids) and the presence of two additional domains; the middle domain and the GTPase effector domain (GED), which are involved in oligomerization and regulation of the GTPase activity.
This entry represents the GTPase domain, containing the GTP-binding motifs that are needed for guanine-nucleotide binding and hydrolysis. The conservation of these motifs is absolute except for the the final motif in guanylate-binding proteins. The GTPase catalytic activity can be stimulated by oligomerisation of the protein, which is mediated by interactions between the GTPase domain, the middle domain and the GED.
The dynamins: redundant or distinct functions for an expanding family of related GTPases?
Proc Natl Acad Sci U S A. 1997; 94: 377-84
Display abstract
In the 7 years since dynamin was first isolated from bovine brain in search of novel microtubule-based motors, our understanding of this enzyme has expanded significantly. We now know that brain dynamin belongs to a family of large GTPases, which mediate vesicle trafficking. Furthermore, this enzymatic activity is markedly increased through association with microtubules, acidic phospholipids, and certain regulatory proteins that contain Src homology 3 (SH3) domains. From functional, genetic, and cellular manipulations, it is now generally accepted that dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. These observations have confirmed at least one function of dynamin that was predicted from seminal studies on a pleiotropic mutant, shibire(ts) (shi(ts)) in Drosophila melanogaster. Of equal interest is the finding that there are multiple dynamin gene products, including two that are expressed in a tissue-specific manner, and they share marked homology with a larger family of distinct but related proteins. Therefore, it is attractive to speculate that the different dynamins may participate in related cellular functions, such as distinct endocytic processes and even secretion. In turn, dynamin could play an important role in cell growth, cell spreading, and neurite outgrowth. The purpose of this review is to enumerate on the expansive dynamin literature and to discuss the nomenclature, expression, and putative functions of this growing and interesting family of proteins.
Dynamin, endocytosis and intracellular signalling (review).
Mol Membr Biol. 1996; 13: 189-215
Display abstract
Dynamin is a neuronal phosphoprotein and a GTPase enzyme which mediates late stages of endocytosis in both neural and non-neural cells. Current knowledge about dynamin is reviewed with particular emphasis on its structure and regulation with respect to phosphorylation, protein-protein interactions and phospholipid binding. The major themes are the biochemical regulation of dynamin, its effects on dynamin's GTPase activity and how this might relate to assembling the 'fission ring' that brings about vesicle retrieval. Dynamin I is an isoform of the enzyme primarily located in the central and peripheral nervous systems, where it is enriched in areas of abundant synaptic contacts. Dynamin I undergoes protein-protein interactions via its proline-rich domain at the C-terminus and these can elevate its N-terminal GTPase activity. Dynamin I interacts with multiple proteins in the nerve terminal, including SH3 domain-containing proteins such as amphiphysin and potentially with other proteins such as betagamma subunits. These regulate its role in endocytosis by targeting dynamin I to specific subcellular locations of retrieval. Dynamin I is phosphorylated in vivo by PKC and dephosphorylated on depolarization and calcium influx into nerve terminals in parallel with the coupled events of exocytosis and endocytosis. In late stages of synaptic vesicle retrieval dynamin I undergoes stimulated assembly into a collar, or fission ring, that surrounds the neck of recycling synaptic vesicles. Activation of GTP hydrolysis probably then generates the free synaptic vesicle, which can be refilled with neurotransmitters. This targeting and assembly may involve sequential steps including recruitment of AP-2 to synaptotagmin on the synaptic vesicle, and recruitment of amphiphysin, dynamin I, and synaptojanin. In addition to synaptic vesicle retrieval, dynamin has been associated with intracellular events mediated by growth factor receptors, insulin receptors and the beta-adrenergic receptor. This is likely to reflect targeting of these receptors for endocytosis soon after their activation. However, does it also suggest a broader role for dynamin in other aspects of intracellular signalling pathways?
Dynamin is a GTPase stimulated to high levels of activity by microtubules.
Nature. 1992; 355: 733-5
Display abstract
Dynamin was initially identified in calf brain tissue as a protein of relative molecular mass 100,000 which induced nucleotide-sensitive bundling of microtubules. Purified dynamin showed only trace ATPase activity. But in combination with an activating factor removed during the purification, it exhibited microtubule-activated ATPase activity and dynamin-induced bundles showed evidence of ATP-dependent force production. Dynamin is the product of the Drosophila gene shibire, which has been implicated in synaptic vesicle recycling and, more generally, in the budding of endocytic vesicles from the plasma membrane. Dynamin also shows extensive homology with proteins that participate in vacuolar protein sorting and spindle pole-body separation in yeast, and in interferon-induced viral resistance in mammals. All members of this family contain consensus sequence elements consistent with GTP binding near their amino termini, although none has been shown to have GTPase activity. We report here that dynamin is a specific GTPase which can be stimulated to very high levels of activity by microtubules.
Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins.
Nature. 1990; 347: 256-61
Display abstract
A complementary DNA encoding the D100 polypeptide of rat brain dynamin--a force-producing, microtubule-activated nucleotide triphosphatase--has been cloned and sequenced. The predicted amino acid sequence includes a guanine nucleotide-binding domain that is homologous with those of a family of antiviral factors, inducible by interferon and known as Mx proteins, and with the product of the essential yeast vacuolar protein sorting gene VPS1. These relationships imply the existence of a new family of GTPases with physiological roles that may include microtubule-based motility and protein sorting.