The domain within your query sequence starts at position 13 and ends at position 353; the E-value for the G_alpha domain shown below is 4.43e-218.
All catalytic sites are present in this domain. Check the literature (PubMed 94353239 ) for details.
VERSKMIDRNLREDGEKAAKEVKLLLLGAGESGKSTIVKQMKIIHEDGYSEDECKQYKVV VYSNTIQSIIAIIRAMGRLKIDFGESARADDARQLFVLAGSAEEGVMTSELAGVIKRLWR DGGVQACFSRSREYQLNDSASYYLNDLDRISQTNYIPTQQDVLRTRVKTTGIVETHFTFK ELYFKMFDVGGQRSERKKWIHCFEGVTAIIFCVALSDYDLVLAEDEEMNRMHESMKLFDS ICNNKWFTDTSIILFLNKKDLFEEKIKRSPLTICYPEYTGSNTYEEAAAYIQCQFEDLNR RKDTKEVYTHFTCATDTKNVQFVFDAVTDVIIKNNLKECGL
G_alphaG protein alpha subunit |
---|
SMART accession number: | SM00275 |
---|---|
Description: | Subunit of G proteins that contains the guanine nucleotide binding site |
Interpro abstract (IPR001019): | Guanine nucleotide binding proteins (G proteins) are membrane-associated, heterotrimeric proteins composed of three subunits: alpha ( IPR001019 ), beta ( IPR001632 ) and gamma ( IPR001770 ) [ (PUBMED:14762218) ]. G proteins and their receptors (GPCRs) form one of the most prevalent signalling systems in mammalian cells, regulating systems as diverse as sensory perception, cell growth and hormonal regulation [ (PUBMED:15294442) ]. At the cell surface, the binding of ligands such as hormones and neurotransmitters to a GPCR activates the receptor by causing a conformational change, which in turn activates the bound G protein on the intracellular-side of the membrane. The activated receptor promotes the exchange of bound GDP for GTP on the G protein alpha subunit. GTP binding changes the conformation of switch regions within the alpha subunit, which allows the bound trimeric G protein (inactive) to be released from the receptor, and to dissociate into active alpha subunit (GTP-bound) and beta/gamma dimer. The alpha subunit and the beta/gamma dimer go on to activate distinct downstream effectors, such as adenylyl cyclase, phosphodiesterases, phospholipase C, and ion channels. These effectors in turn regulate the intracellular concentrations of secondary messengers, such as cAMP, diacylglycerol, sodium or calcium cations, which ultimately lead to a physiological response, usually via the downstream regulation of gene transcription. The cycle is completed by the hydrolysis of alpha subunit-bound GTP to GDP, resulting in the re-association of the alpha and beta/gamma subunits and their binding to the receptor, which terminates the signal [ (PUBMED:15119945) ]. The length of the G protein signal is controlled by the duration of the GTP-bound alpha subunit, which can be regulated by RGS (regulator of G protein signalling) proteins or by covalent modifications [ (PUBMED:11313912) ]. G protein alpha subunits are 350-400 amino acids in length and have molecular weights in the range 40-45kDa. Seventeen distinct types of alpha subunit have been identified in mammals. These fall into 4 main groups on the basis of both sequence similarity and function: alpha-S ( IPR000367 ), alpha-Q ( IPR000654 ), alpha-I ( IPR001408 )and alpha-12( IPR000469 ) [ (PUBMED:1902986) ]. The specific combination of subunits in heterotrimeric G proteins affects not only which receptor it can bind to, but also which downstream target is affected, providing the means to target specific physiological processes in response to specific external stimuli [ (PUBMED:9278091) (PUBMED:11882385) ]. G proteins carry lipid modifications on one or more of their subunits to target them to the plasma membrane and to contribute to protein interactions. This family consists of the G protein alpha subunit, which acts as a weak GTPase. G protein classes are defined based on the sequence and function of their alpha subunits, which in mammals fall into four main categories: G alpha-S ( IPR000367 ), G alpha-Q ( IPR000654 ), G alpha-I ( IPR001408 ) and G alpha-12 ( IPR000469 ); there are also fungal ( IPR002975 ) and plant classes ( IPR002976 ) of alpha subunits. Many alpha subunits are substrates for ADP-ribosylation by cholera or pertussis toxins. They are often N-terminally acylated, usually with myristate and/or palmitoylate, and these fatty acid modifications are probably important for membrane association and high-affinity interactions with other proteins. The alpha subunit consists of two domains: a GTP-binding domain and a helical insertion domain ( IPR011025 ). The GTP-binding domain is homologous to Ras-like small GTPases, and includes switch regions I and II, which change conformation during activation. The switch regions are loops of alpha-helices with conformations sensitive to guanine nucleotides. The helical insertion domain is inserted into the GTP-binding domain before switch region I and is unique to heterotrimeric G proteins. This helical insertion domain functions to sequester the guanine nucleotide at the interface with the GTP-binding domain and must be displaced to enable nucleotide dissociation. |
GO process: | G protein-coupled receptor signaling pathway (GO:0007186) |
GO function: | guanyl nucleotide binding (GO:0019001), G-protein beta/gamma-subunit complex binding (GO:0031683), GTPase activity (GO:0003924) |
Family alignment: |
There are 12497 G_alpha domains in 12485 proteins in SMART's nrdb database.
Click on the following links for more information.
- Evolution (species in which this domain is found)
- Disease (disease genes where sequence variants are found in this domain)
- Metabolism (metabolic pathways involving proteins which contain this domain)
- Structure (3D structures containing this domain)
- Links (links to other resources describing this domain)