Overview
SMART (a Simple Modular Architecture Research Tool) allows the identification and annotation of genetically mobile domains and the analysis of domain architectures. More than 500 domain families found in signalling, extracellular and chromatin-associated proteins are detectable. These domains are extensively annotated with respect to phyletic distributions, functional class, tertiary structures and functionally important residues. Each domain found in a non-redundant protein database as well as search parameters and taxonomic information are stored in a relational database system. User interfaces to this database allow searches for proteins containing specific combinations of domains in defined taxa. For all the details, please refer to the publications on SMART.
If you would like to have an in-house SMART installation, with the complete web user interface, please contact biobyte solutions GmbH for further information.
SMART Literature:
- Letunic I and Bork P
- SMART: recent updates, new developments and status in 2020
- Nucleic Acids Res 2020; doi:10.1093/nar/gkaa937
- Display abstract
SMART (Simple Modular Architecture Research Tool) is a web resource (https://smart.embl.de) for the identification and annotation of protein domains and the analysis of protein domain architectures. SMART version 9 contains manually curated models for more than 1300 protein domains, with a topical set of 68 new models added since our last update article (1). All the new models are for diverse recombinase families and subfamilies and as a set they provide a comprehensive overview of mobile element recombinases namely transposase, integrase, relaxase, resolvase, cas1 casposase and Xer like cellular recombinase. Further updates include the synchronization of the underlying protein databases with UniProt (2), Ensembl (3) and STRING (4), greatly increasing the total number of annotated domains and other protein features available in architecture analysis mode. Furthermore, SMART's vector-based protein display engine has been extended and updated to use the latest web technologies and the domain architecture analysis components have been optimized to handle the increased number of protein features available.
- Letunic I and Bork P
- 20 years of the SMART protein domain annotation resource
- Nucleic Acids Res 2017; doi:10.1093/nar/gkx922
- Display abstract
SMART (Simple Modular Architecture Research Tool) is a web resource (http://smart.embl.de) for the identification and annotation of protein domains and the analysis of protein domain architectures. SMART version 8 contains manually curated models for more than 1300 protein domains, with approximately 100 new models added since our last update article (1). The underlying protein databases were synchronized with UniProt (2), Ensembl (3) and STRING (4), doubling the total number of annotated domains and other protein features to more than 200 million. In its 20th year, the SMART analysis results pages have been streamlined again and its information sources have been updated. SMART's vector based display engine has been extended to all protein schematics in SMART and rewritten to use the latest web technologies. The internal full text search engine has been redesigned and updated, resulting in greatly increased search speed.
- Letunic I, Doerks T, Bork P
- SMART: recent updates, new developments and status in 2015
- Nucleic Acids Res 2014; doi:10.1093/nar/gku949
- Display abstract
SMART (Simple Modular Architecture Research Tool) is a web resource (http://smart.embl.de/) providing simple identification and extensive annotation of protein domains and the exploration of protein domain architectures. In the current version, SMART contains manually curated models for more than 1200 protein domains, with ?200 new models since our last update article. The underlying protein databases were synchronized with UniProt, Ensembl and STRING, bringing the total number of annotated domains and other protein features above 100 million. SMART's ?Genomic? mode, which annotates proteins from completely sequenced genomes was greatly expanded and now includes 2031 species, compared to 1133 in the previous release. SMART analysis results pages have been completely redesigned and include links to several new information sources. A new, vector-based display engine has been developed for protein schematics in SMART, which can also be exported as high-resolution bitmap images for easy inclusion into other documents. Taxonomic tree displays in SMART have been significantly improved, and can be easily navigated using the integrated search engine.
- Letunic I, Doerks T, Bork P
- SMART 7: recent updates to the protein domain annotation resource
- Nucleic Acids Res 2012; doi:10.1093/nar/gkr931
- Display abstract
SMART (Simple Modular Architecture Research Tool) is an online resource (http://smart.embl.de/) for the identification and annotation of protein domains and the analysis of protein domain architectures. SMART version 7 contains manually curated models for 1009 protein domains, 200 more than in the previous version. The current release introduces several novel features and a streamlined user interface resulting in a faster and more comfortable workflow. The underlying protein databases were greatly expanded, resulting in a 2-fold increase in number of annotated domains and features. The database of completely sequenced genomes now includes 1133 species, compared to 630 in the previous release. Domain architecture analysis results can now be exported and visualized through the iTOL phylogenetic tree viewer. ?metaSMART? was introduced as a novel subresource dedicated to the exploration and analysis of domain architectures in various metagenomics data sets. An advanced full text search engine was implemented, covering the complete annotations for SMART and Pfam domains, as well as the complete set of protein descriptions, allowing users to quickly find relevant information.
- Letunic I, Doerks T, Bork P
- SMART 6: recent updates and new developments.
- Nucleic Acids Res 2008; doi:10.1093/nar/gkn808
- Display abstract
Simple modular architecture research tool (SMART) is an online tool (http://smart.embl.de/) for the identification and annotation of protein domains. It provides a user-friendly platform for the exploration and comparative study of domain architectures in both proteins and genes. The current release of SMART contains manually curated models for 784 protein domains. Recent developments were focused on further data integration and improving user friendliness. The underlying protein database based on completely sequenced genomes was greatly expanded and now includes 630 species, compared to 191 in the previous release. As an initial step towards integrating information on biological pathways into SMART, our domain annotations were extended with data on metabolic pathways and links to several pathways resources. The interaction network view was completely redesigned and is now available for more than 2 million proteins. In addition to the standard web access to the database, users can now query SMART using distributed annotation system (DAS) or through a simple object access protocol (SOAP) based web service.
- Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P
- SMART 5: domains in the context of genomes and networks.
- Nucleic Acids Res 2006; 34: D257-60
- Display abstract
The Simple Modular Architecture Research Tool (SMART) is an online resource (http://smart.embl.de/) used for protein domain identification and the analysis of protein domain architectures. Many new features were implemented to make SMART more accessible to scientists from different fields. The new 'Genomic' mode in SMART makes it easy to analyze domain architectures in completely sequenced genomes. Domain annotation has been updated with a detailed taxonomic breakdown and a prediction of the catalytic activity for 50 SMART domains is now available, based on the presence of essential amino acids. Furthermore, intrinsically disordered protein regions can be identified and displayed. The network context is now displayed in the results page for more than 350 000 proteins, enabling easy analyses of domain interactions.
- Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P.
- SMART 4.0: towards genomic data integration.
- Nucleic Acids Res 2004; 32(1): D142-4
- Display abstract
SMART (Simple Modular Architecture Research Tool) is a web tool (http://smart.embl.de/) for the identification and annotation of protein domains, and provides a platform for the comparative study of complex domain architectures in genes and proteins. The January 2004 release of SMART contains 685 protein domains. New developments in SMART are centred on the integration of data from completed metazoan genomes. SMART now uses predicted proteins from complete genomes in its source sequence databases, and integrates these with predictions of orthology. New visualization tools have been developed to allow analysis of gene intron-exon structure within the context of protein domain structure, and to align these displays to provide schematic comparisons of orthologous genes, or multiple transcripts from the same gene. Other improvements include the ability to query SMART by Gene Ontology terms, improved structure database searching and batch retrieval of multiple entries.
- Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P.
- Recent improvements to the SMART domain-based sequence annotation resource.
- Nucleic Acids Res 2002; 30(1): 242-244
- Display abstract
SMART (Simple Modular Architecture Research Tool, http://smart.embl-heidelberg.de) is a web-based resource used for the annotation of protein domains and the analysis of domain architectures, with particular emphasis on mobile eukaryotic domains. Extensive annotation for each domain family is available, providing information relating to function, subcellular localization, phyletic distribution and tertiary structure. The January 2002 release has added more than 200 hand-curated domain models. This brings the total to over 600 domain families that are widely represented among nuclear, signalling and extracellular proteins. Annotation now includes links to the Online Mendelian Inheritance in Man (OMIM) database in cases where a human disease is associated with one or more mutations in a particular domain. We have implemented new analysis methods and updated others. New advanced queries provide direct access to the SMART relational database using SQL. This database now contains information on intrinsic sequence features such as transmembrane regions, coiled-coils, signal peptides and internal repeats. SMART output can now be easily included in users' documents. A SMART mirror has been created at http://smart.ox.ac.uk.
- Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P. and Bork, P.
- SMART: A Web-based tool for the study of genetically mobile domains.
- Nucleic Acids Res 2000; 28: 231-234
- Display abstract
SMART (a Simple Modular Architecture Research Tool) allows the identification and annotation of genetically mobile domains and the analysis of domain architectures (http://SMART.embl-heidelberg.de ). More than 400 domain families found in signalling, extra-cellular and chromatin-associated proteins are detectable. These domains are extensively annotated with respect to phyletic distributions, functional class, tertiary structures and functionally important residues. Each domain found in a non-redundant protein database as well as search parameters and taxonomic information are stored in a relational database system. User interfaces to this database allow searches for proteins containing specific combinations of domains in defined taxa.
- Copley, R.R., Schultz, J., Ponting, C.P. and Bork, P.
- Protein families in multicellular organisms.
- Curr Opin Struct Biol 1999; 9: 408-415
- Display abstract
The complete sequence of the nematode worm Caenorhabditis elegans contains the genetic machinery that is required to undertake the core biological processes of single cells. However, the genome also encodes proteins that are associated with multicellularity, as well as others that are lineage-specific expansions of phylogenetically widespread families and yet more that are absent in non-nematodes. Ongoing analysis is beginning to illuminate the similarities and differences among human proteins and proteins that are encoded by the genomes of the multicellular worm and the unicellular yeast, and will be essential in determining the reliability of transferring experimental data among phylogenetically distant species.
- Ponting, C.P., Schultz, J.,Milpetz, F. & Bork, P.
- SMART: identification and annotation of domains from signalling and extracellular protein sequences.
- Nucleic Acids Res 1999; 27: 229-232
- Display abstract
SMART is a simple modular architecture research tool and database that provides domain identification and annotation on the WWW (http://coot.embl-heidelberg.de/SMART). The tool compares query sequences with its databases of domain sequences and multiple alignments whilst concurrently identifying compositionally biased regions such as signal peptide, transmembrane and coiled coil segments. Annotated and unannotated regions of the sequence can be used as queries in searches of sequence databases. The SMART alignment collection represents more than 250 signalling and extracellular domains. Each alignment is curated to assign appropriate domain boundaries and to ensure its quality. In addition, each domain is annotated extensively with respect to cellular localisation, species distribution, functional class, tertiary structure and functionally important residues.
- Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P.
- SMART, a simple modular architecture research tool: Identification of signaling domains.
- PNAS 1998; 95: 5857-5864
- Display abstract
Accurate multiple alignments of 86 domains that occur in signaling proteins have been constructed and used to provide a Web-based tool (SMART: simple modular architecture research tool) that allows rapid identification and annotation of signaling domain sequences. The majority of signaling proteins are multidomain in character with a considerable variety of domain combinations known. Comparison with established databases showed that 25% of our domain set could not be deduced from SwissProt and 41% could not be annotated by Pfam. SMART is able to determine the modular architectures of single sequences or genomes; application to the entire yeast genome revealed that at least 6.7% of its genes contain one or more signaling domains, approximately 350 greater than previously annotated. The process of constructing SMART predicted (i) novel domain homologues in unexpected locations such as band 4.1-homologous domains in focal adhesion kinases; (ii) previously unknown domain families, including a citron-homology domain; (iii) putative functions of domain families after identification of additional family members, for example, a ubiquitin-binding role for ubiquitin-associated domains (UBA); (iv) cellular roles for proteins, such predicted DEATH domains in netrin receptors further implicating these molecules in axonal guidance; (v) signaling domains in known disease genes such as SPRY domains in both marenostrin/pyrin and Midline 1; (vi) domains in unexpected phylogenetic contexts such as diacylglycerol kinase homologues in yeast and bacteria; and (vii) likely protein misclassifications exemplified by a predicted pleckstrin homology domain in a Candida albicans protein, previously described as an integrin.
All protein images generated by SMART are licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported.