The domain within your query sequence starts at position 93 and ends at position 130; the E-value for the LDLa domain shown below is 4.58e-13.
PCRENEFQCGDGTCVLAIKRCNQERDCPDGSDEAGCLQ
LDLaLow-density lipoprotein receptor domain class A |
---|
SMART accession number: | SM00192 |
---|---|
Description: | Cysteine-rich repeat in the low-density lipoprotein (LDL) receptor that plays a central role in mammalian cholesterol metabolism. The N-terminal type A repeats in LDL receptor bind the lipoproteins. Other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. Mutations in the LDL receptor gene cause familial hypercholesterolemia. |
Interpro abstract (IPR002172): | This entry represents the LDLR class A (cyateine-rich) repeat, which contains 6 disulphide-bound cysteines and a highly conserved cluster of negatively charged amino acids, of which many are clustered on one face of the module [ (PUBMED:7603991) ]. In LDL receptors, the class A domains form the binding site for LDL and calcium. The acidic residues between the fourth and sixth cysteines are important for high-affinity binding of positively charged sequences in LDLR's ligands. The repeat consists of a beta-hairpin structure followed by a series of beta turns. In the absence of calcium, LDL-A domains are unstructured; the bound calcium ion imparts structural integrity. Following these repeats is a 350 residue domain that resembles part of the epidermal growth factor (EGF) precursor. Numerous familial hypercholestorolemia mutations of the LDL receptor alter the calcium coordinating residue of LDL-A domains or other crucial scaffolding residues. The low-density lipoprotein receptor (LDLR) is the major cholesterol-carrying lipoprotein of plasma, acting to regulate cholesterol homeostasis in mammalian cells. The LDL receptor binds LDL and transports it into cells by acidic endocytosis. In order to be internalized, the receptor-ligand complex must first cluster into clathrin-coated pits. Once inside the cell, the LDLR separates from its ligand, which is degraded in the lysosomes, while the receptor returns to the cell surface [ (PUBMED:3513311) ]. The internal dissociation of the LDLR with its ligand is mediated by proton pumps within the walls of the endosome that lower the pH. The LDLR is a multi-domain protein, containing:
LDLR is closely related in structure to several other receptors, including LRP1, LRP1b, megalin/LRP2, VLDL receptor, lipoprotein receptor, MEGF7/LRP4, and LRP8/apolipoprotein E receptor2); these proteins participate in a wide range of physiological processes, including the regulation of lipid metabolism, protection against atherosclerosis, neurodevelopment, and transport of nutrients and vitamins [ (PUBMED:17457719) ]. |
GO function: | protein binding (GO:0005515) |
Family alignment: |
There are 170761 LDLa domains in 37441 proteins in SMART's nrdb database.
Click on the following links for more information.
- Evolution (species in which this domain is found)
- Literature (relevant references for this domain)
- Disease (disease genes where sequence variants are found in this domain)
- Metabolism (metabolic pathways involving proteins which contain this domain)
- Structure (3D structures containing this domain)
- Links (links to other resources describing this domain)