Secondary literature sources for AAA
The following references were automatically generated.
- Ogura T, Wilkinson AJ
- AAA+ superfamily ATPases: common structure-diverse function.
- Genes Cells. 2001; 6: 575-97
- Display abstract
The AAA+ superfamily of ATPases, which contain a homologous ATPase module, are found in all kingdoms of living organisms where they participate in diverse cellular processes including membrane fusion, proteolysis and DNA replication. Recent structural studies have revealed that they usually form ring-shaped oligomers, which are crucial for their ATPase activities and mechanisms of action. These ring-shaped oligomeric complexes are versatile in their mode of action, which collectively seem to involve some form of disruption of molecular or macromolecular structure; unfolding of proteins, disassembly of protein complexes, unwinding of DNA, or alteration of the state of DNA-protein complexes. Thus, the AAA+ proteins represent a novel type of molecular chaperone. Comparative analyses have also revealed significant similarities and differences in structure and molecular mechanism between AAA+ ATPases and other ring-shaped ATPases.
- Zhang X et al.
- Structure of the AAA ATPase p97.
- Mol Cell. 2000; 6: 1473-84
- Display abstract
p97, an abundant hexameric ATPase of the AAA family, is involved in homotypic membrane fusion. It is thought to disassemble SNARE complexes formed during the process of membrane fusion. Here, we report two structures: a crystal structure of the N-terminal and D1 ATPase domains of murine p97 at 2.9 A resolution, and a cryoelectron microscopy structure of full-length rat p97 at 18 A resolution. Together, these structures show that the D1 and D2 hexamers pack in a tail-to-tail arrangement, and that the N domain is flexible. A comparison with NSF D2 (ATP complex) reveals possible conformational changes induced by ATP hydrolysis. Given the D1 and D2 packing arrangement, we propose a ratchet mechanism for p97 during its ATP hydrolysis cycle.
- Hu Z, Lutkenhaus J
- Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ.
- J Bacteriol. 2000; 182: 3965-71
- Display abstract
In Escherichia coli FtsZ assembles into a Z ring at midcell while assembly at polar sites is prevented by the min system. MinC, a component of this system, is an inhibitor of FtsZ assembly that is positioned within the cell by interaction with MinDE. In this study we found that MinC consists of two functional domains connected by a short linker. When fused to MalE the N-terminal domain is able to inhibit cell division and prevent FtsZ assembly in vitro. The C-terminal domain interacts with MinD, and expression in wild-type cells as a MalE fusion disrupts min function, resulting in a minicell phenotype. We also find that MinC is an oligomer, probably a dimer. Although the C-terminal domain is clearly sufficient for oligomerization, the N-terminal domain also promotes oligomerization. These results demonstrate that MinC consists of two independently functioning domains: an N-terminal domain capable of inhibiting FtsZ assembly and a C-terminal domain responsible for localization of MinC through interaction with MinD. The fusion of these two independent domains is required to achieve topological regulation of Z ring assembly.
- May AP, Misura KM, Whiteheart SW, Weis WI
- Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein.
- Nat Cell Biol. 1999; 1: 175-82
- Display abstract
The cytosolic ATPase N-ethylmaleimide-sensitive fusion protein (NSF) disassembles complexes of membrane-bound proteins known as SNAREs, an activity essential for vesicular trafficking. The amino-terminal domain of NSF (NSF-N) is required for the interaction of NSF with the SNARE complex through the adaptor protein alpha-SNAP. The crystal structure of NSF-N reveals two subdomains linked by a single stretch of polypeptide. A polar interface between the two subdomains indicates that they can move with respect to one another during the catalytic cycle of NSF. Structure-based sequence alignments indicate that in addition to NSF orthologues, the p97 family of ATPases contain an amino-terminal domain of similar structure.
- Pullikuth AK, Gill SS
- Identification of a Manduca sexta NSF ortholog, a member of the AAA family of ATPases.
- Gene. 1999; 240: 343-54
- Display abstract
Transport between intracellular compartments requires the activity of an N-ethylmaleimide-sensitive fusion protein (NSF). NSF is a member of a growing family of ATPases regulating several membrane fusion reactions. We have cloned the NSF ortholog from the moth, Manduca sexta (MsNSF). MsNSF is highly conserved in domains critical for NSF function in vertebrates. MsNSF codes for a protein of 745 amino acids, translating to a M(r) of 83kDa in vitro. MsNSF is 72% and 61% similar in amino acid sequence to Drosophila and vertebrate NSFs, respectively. We expressed the D1 ATP domain of MsNSF toward which antibodies selective to MsNSF were generated. Affinity purified alpha-MsNSF antibodies detect a 83kDa protein which is highly enriched in nervous tissues. Levels of MsNSF expression are substantially lower in other tissues examined. Anti-MsNSF antibodies are capable of inhibiting vertebrate intra-Golgi transport of a cargo protein in vitro. The identification of NSF ortholog from Manduca, whose neuroendocrine system is well studied, should facilitate isolation of complexes involved in protein trafficking from insect models. Phylogenetic analysis of NSF and related proteins suggests that the members of the AAA family arose from different ancestors, since the ingroup was not monophyletic. Proteasomal subunits and p97 homologs form two distinct subfamilies, while NSF homologs branch in to the third.
- Neuwald AF
- The hexamerization domain of N-ethylmaleimide-sensitive factor: structural clues to chaperone function.
- Structure Fold Des. 1999; 7: 1923-1923
- Display abstract
The hexameric structure of the D2 ATP-binding module of N-ethylmaleimide-sensitive factor (NSF), a chaperone involved in SNARE complex disassembly, was recently determined. This structure and the previously determined structure of the DNA polymerase III delta' subunit have far-reaching biological significance because these modules are related to diverse ATPases that promote the assembly, disassembly and operation of various protein complexes.
- King L, Chevalier M, Blond SY
- Specificity of peptide-induced depolymerization of the recombinant carboxy-terminal fragment of BiP/GRP78.
- Biochem Biophys Res Commun. 1999; 263: 181-6
- Display abstract
In the present study, we have used a non-denaturing gel electrophoresis assay to characterize the specificity of the peptide-induced depolymerization process of the isolated recombinant C-terminal domain (C30) of the molecular chaperone BiP, in the presence of specific synthetic peptides and with the neuropeptide Substance P. In the absence of peptidic ligand, C30 self-associates readily into multiple oligomeric species. Upon peptide addition, C30 oligomers convert into dimers, then into monomers. Our data indicate that the algorithm we previously developed to predict putative BiP binding sites in any protein sequence is also a good indicator as to whether a peptide can efficiently induce depolymerization of the C-terminal peptide binding domain and stimulate the ATPase activity of the full-length protein.
- Harrison MD, Meier S, Dameron CT
- Characterisation of copper-binding to the second sub-domain of the Menkes protein ATPase (MNKr2).
- Biochim Biophys Acta. 1999; 1453: 254-60
- Display abstract
The Menkes ATPase (MNK) has an essential role in the translocation of copper across cellular membranes. In a complementary manner, the intracellular concentration of copper regulates the activity and cellular location of the ATPase through its six homologous amino-terminal domains. The roles of the six amino-terminal domains in the activation and cellular trafficking processes are unknown. Understanding the role of these domains relies on the development of an understanding of their metal-binding properties and structural properties. The second conserved sub-domain of MNK was over-expressed, purified and its copper-binding properties characterised. Reconstitution studies demonstrate that copper binds to MNKr2 as Cu(I) with a stoichiometry of one copper per domain. This is the first direct evidence of copper-binding to the MNK amino-terminal repeats. Circular dichroism studies suggest that the binding or loss of copper to MNKr2 does not cause substantial changes to the secondary structure of the protein.
- Karata K, Inagawa T, Wilkinson AJ, Tatsuta T, Ogura T
- Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH.
- J Biol Chem. 1999; 274: 26225-32
- Display abstract
Escherichia coli FtsH is an ATP-dependent protease that belongs to the AAA protein family. The second region of homology (SRH) is a highly conserved motif among AAA family members and distinguishes these proteins in part from the wider family of Walker-type ATPases. Despite its conservation across the AAA family of proteins, very little is known concerning the function of the SRH. To address this question, we introduced point mutations systematically into the SRH of FtsH and studied the activities of the mutant proteins. Highly conserved amino acid residues within the SRH were found to be critical for the function of FtsH, with mutations at these positions leading to decreased or abolished ATPase activity. The effects of the mutations on the protease activity of FtsH correlated strikingly with their effects on the ATPase activity. The ATPase-deficient SRH mutants underwent an ATP-induced conformational change similar to wild type FtsH, suggesting an important role for the SRH in ATP hydrolysis but not ATP binding. Analysis of the data in the light of the crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein suggests a plausible mechanism of ATP hydrolysis by the AAA ATPases, which invokes an intermolecular catalytic role for the SRH.
- Beyer A
- Sequence analysis of the AAA protein family.
- Protein Sci. 1997; 6: 2043-58
- Display abstract
The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases.
- Wawrzynow A, Banecki B, Zylicz M
- The Clp ATPases define a novel class of molecular chaperones.
- Mol Microbiol. 1996; 21: 895-9
- Display abstract
The Clp ATPases were originally identified as a regulatory component of the bacterial ATP-dependent Clp serine proteases. Proteins homologous to the Escherichia coli Clp ATPases (ClpA, B, X or Y) have been identified in every organism examined so far. Recent data suggest that the Clp ATPases are not only specificity factors which help to 'present' various protein substrates to the ClpP or other catalytic proteases, but are also molecular chaperones which can function independently of ClpP. This review discusses the recent evidence that the Clp ATPases are indeed molecular chaperones capable of either repairing proteins damaged during stress conditions or activating the initiation proteins for Mu, lambda or P1 DNA replication. A mechanism is suggested to explain how the Clp ATPases 'decide' whether to repair or destroy their protein substrates.