Secondary literature sources for BPI1
The following references were automatically generated.
- Levels JH et al.
- Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein.
- Infect Immun. 2005; 73: 2321-6
- Display abstract
Lipopolysaccharide (LPS), the major outer membrane component of gram-negative bacteria, is a potent endotoxin that triggers cytokine-mediated systemic inflammatory responses in the host. Plasma lipoproteins are capable of LPS sequestration, thereby attenuating the host response to infection, but ensuing dyslipidemia severely compromises this host defense mechanism. We have recently reported that Escherichia coli J5 and Re595 LPS chemotypes that contain relatively short O-antigen polysaccharide side chains are efficiently redistributed from high-density lipoproteins (HDL) to other lipoprotein subclasses in normal human whole blood (ex vivo). In this study, we examined the role of the acute-phase proteins LPS-binding protein (LBP) and phospholipid transfer protein (PLTP) in this process. By the use of isolated HDL containing fluorescent J5 LPS, the redistribution of endotoxin among the major lipoprotein subclasses in a model system was determined by gel permeation chromatography. The kinetics of LPS and lipid particle interactions were determined by using Biacore analysis. LBP and PLTP were found to transfer LPS from HDL predominantly to low-density lipoproteins (LDL), in a time- and dose-dependent manner, to induce remodeling of HDL into two subpopulations as a consequence of the LPS transfer and to enhance the steady-state association of LDL with HDL in a dose-dependent fashion. The presence of LPS on HDL further enhanced LBP-dependent interactions of LDL with HDL and increased the stability of the HDL-LDL complexes. We postulate that HDL remodeling induced by LBP- and PLTP-mediated LPS transfer may contribute to the plasma lipoprotein dyslipidemia characteristic of the acute-phase response to infection.
- Lennartsson A, Pieters K, Vidovic K, Gullberg U
- A murine antibacterial ortholog to human bactericidal/permeability-increasing protein (BPI) is expressed in testis, epididymis, and bone marrow.
- J Leukoc Biol. 2005; 77: 369-77
- Display abstract
The bactericidal/permeability-increasing protein (BPI), stored in human neutrophil granulocytes, is cytotoxic against Gram-negative bacteria. Several genes related to BPI cluster on human chromosome 20 and on mouse chromosome 2, but expression and characterization of a BPI ortholog in the mouse have not been reported. We asked whether BPI is structurally and functionally conserved between humans and mice and whether murine BPI might be synthesized in neutrophils as well as in other tissues. We report the isolation of a murine full-length cDNA encoding a 54-kDa protein, showing 53% amino acid identity and 71% similarity, to human BPI. The murine BPI and human BPI genes show a similar exon-intron organization. Murine BPI mRNA was detected in testis, epididymis, and bone marrow, as well as in Sertoli and promyelocytic cell lines. Although levels of BPI mRNA in human and murine testis were comparable, expression in murine bone marrow cells was low as compared with that in human bone marrow. BPI protein showed a cytoplasmic, granular localization in mature neutrophils. BPI gene expression in Sertoli and promyelocytic cells was enhanced several-fold by all-trans retinoic acid. Overexpression of murine BPI in human embryonic kidney 293 cells resulted in antibacterial activity against Escherichia coli, comparable with that obtained with human BPI. In conclusion, it was demonstrated that mouse neutrophils store BPI with antibacterial activity and that murine BPI is also expressed in testis and epididymis.
- Bingle CD, Craven CJ
- Meet the relatives: a family of BPI- and LBP-related proteins.
- Trends Immunol. 2004; 25: 53-5
- Display abstract
Until recently, two key members of the innate immune response to Gram negative bacteria, bactericidal permeability-increasing protein (BPI) and lipopolysaccharide (LPS)-binding protein, have been considered to be members of a small family of lipid-binding proteins that also contains cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP). A recent paper has characterised three related proteins that are expressed in the mouth, nose and upper airways. Taken together with other recent data, it is clear that a large family of such proteins exists and these additional members might also function in the innate immune response.
- Stenvik J, Solstad T, Strand C, Leiros I, Jorgensen T TO
- Cloning and analyses of a BPI/LBP cDNA of the Atlantic cod (Gadus morhua L.).
- Dev Comp Immunol. 2004; 28: 307-23
- Display abstract
Using the differential screening technique, a cDNA related to the mammalian family of lipid transfer/lipopolysaccharide-binding proteins was cloned from the Atlantic cod (Gadus morhua L.). The gene is an ortholog of a recently identified gene of rainbow trout (Oncorhynchus mykiss). Phylogenetic analyses suggest that teleost BPI/LBP are modern descendants of the ancestor of mammalian bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP), and a gene of the urochordate Ciona intestinalis is related to this gene family. Molecular modeling suggests that the structure of cod BPI/LBP is similar to mammalian BPI and LBP, while its highly basic character is similar to BPI. Cod BPI/LBP is constitutively expressed in head-kidney (HK) leukocytes. After intraperitoneal injection of bacterin high levels of cod BPI/LBP mRNA were detected also in peripheral blood cells and spleen, while moderate to low levels of transcript were found in heart, liver, gills, skin, brain, and intestine. We conclude that the patterns of charge and expression of cod BPI/LBP are more similar to mammalian BPI than to mammalian LBP.
- Dullaart RP et al.
- Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations.
- Scand J Clin Lab Invest. 2004; 64: 205-15
- Display abstract
BACKGROUND: Human plasma contains two lipid transfer proteins, cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), which are crucial in reverse cholesterol transport. METHODS: Plasma CETP and PLTP activity levels and concentrations in 16 type 2 diabetic patients and 16 matched healthy subjects were determined, and these data were correlated to clinical variables, including insulin sensitivity and lipid levels. RESULTS: Plasma triglycerides were higher (p<0.02) and high-density lipoprotein (HDL) cholesterol (p<0.02) was lower in diabetic patients. Plasma CETP activity and concentrations were not significantly different between diabetic and healthy subjects, but CETP specific activity was lower in diabetic patients (p<0.001). Multiple regression analysis showed that plasma CETP activity was positively related to CETP concentration (p=0.0001) and negatively to the diabetic state (p<0.002) or to HbA1c (p<0.02). PLTP activity (p<0.05) and specific activity were higher (p<0.05), whereas there was no difference in PLTP concentration between the two groups. There was no significant bivariate correlation between PLTP concentration and activity, in either healthy or diabetic subjects. Multiple regression analysis did disclose positive relationships of PLTP activity with PLTP concentration (p=0.0001), plasma triglycerides (p=0.0001) and waist/hip ratio (p=0.0001), but not with the diabetic state or HbA1c. CONCLUSIONS: Neither CETP nor PLTP activity was independently associated with insulin sensitivity. Specific CETP activity is decreased in type 2 diabetes mellitus. In contrast, specific PLTP activity is higher in diabetes, as a result of the association of plasma PLTP activity with plasma triglycerides and obesity. Measurement of both plasma lipid transfer protein activity and mass levels may thus provide extra information in diabetes mellitus.
- Kato A, Ogasawara T, Homma T, Saito H, Matsumoto K
- Lipopolysaccharide-binding protein critically regulates lipopolysaccharide-induced IFN-beta signaling pathway in human monocytes.
- J Immunol. 2004; 172: 6185-94
- Display abstract
LPS binding to Toll-like receptor 4 induces a large number of genes through activation of NF-kappaB and IFN-regulatory factor-3 (IRF-3). However, no previous reports have tested the role of serum proteins in LPS-induced gene expression profiles. To investigate how serum proteins affect LPS-induced signaling, we investigated LPS-inducible genes in PBMC using an oligonucleotide probe-array system. Approximately 120 genes up-regulated by LPS were hierarchically divided into two clusters. Induction of one cluster, containing only IFN-inducible genes, was serum dependent. Real-time PCR analysis confirmed that IFN-inducible genes were induced only in the presence of serum, whereas inflammatory genes were induced both in the presence and absence of serum. Further analysis demonstrated that addition of LPS-binding protein (LBP), but not of soluble CD14 to the serum-free medium enabled the induction of IFN-inducible genes and IFN-beta itself by LPS in human monocytes. The mRNAs for IFN-beta and IFN-inducible genes were induced by LPS only in the presence of serum from LBP(+/+) mice, and not in the presence of serum from LBP(-/-) mice. Blocking experiments also confirmed the involvement of LBP in this phenomenon. Immunoblotting analysis showed that phosphorylation of c-Jun N-terminal kinase, p38, IRF-3, tyrosine kinase 2, and STAT1 by LPS, but not of NF-kappaB and extracellular signal-regulated kinase was abrogated in the absence of LBP. This critical role for LBP implies the presence of possible mechanisms linking LBP to the intracellular signaling between Toll-like receptor 4 and IRF-3, leading to the induction of IFN-beta by LPS.
- Beamer LJ
- Structure of human BPI (bactericidal/permeability-increasing protein) and implications for related proteins.
- Biochem Soc Trans. 2003; 31: 791-4
- Display abstract
Human bactericidal/permeability-increasing protein (BPI) belongs to a family of mammalian lipopolysaccharide-binding and lipid transport proteins. Recent sequence database searches indicate that several other protein families, including the palate, lung and nasal epithelial clone (PLUNC), parotid secretory protein (PSP) and BPI-like proteins, are likely to share the BPI fold, which was determined through X-ray crystallographic studies. As the single representative of its fold family of known structure, the three-dimensional model of BPI suggests structural features that are likely to be conserved across this large and varied group of proteins.
- Andrault JB, Gaillard I, Giorgi D, Rouquier S
- Expansion of the BPI family by duplication on human chromosome 20: characterization of the RY gene cluster in 20q11.21 encoding olfactory transporters/antimicrobial-like peptides.
- Genomics. 2003; 82: 172-84
- Display abstract
Antimicrobial peptides provide a defense system against microorganisms. One class of these molecules binds lipophilic substrates and is therefore directed against gram-negative bacteria. This family includes proteins related to bactericidal/permeability-increasing protein (BPI). We characterized an approximately 100-kb cluster of three human genes named RYSR, RYA3, and RY2G5 that are related to the BPI family. The RY cluster maps to 20q11.21, >5 Mb upstream of the BPI cluster. The RY and BPI genes have similar exon structures, indicating that they were derived by duplication from a common ancestor. We identified mouse BPI-related and RY orthologues in syntenic regions, indicating that the gene family expanded before mouse and human diverged. Expression analyses show that RYs are strongly expressed in the olfactory epithelium, suggesting that they also could act as odorant transporters or detoxification agents in the olfactory system. Together, these data show how mammals diversified their antimicrobial defenses/olfactory pathways through a duplication-driven adaptive selection process.
- Kono T, Sakai M
- Molecular cloning of a novel bactericidal permeability-increasing protein/lipopolysaccharide-binding protein (BPI/LBP) from common carp Cyprinus carpio L. and its expression.
- Mol Immunol. 2003; 40: 269-78
- Display abstract
A novel bactericidal permeability-increasing protein/lipopolysaccharide (LPS)-binding protein (BPI/LBP) was isolated from common carp Cyprinus carpio L. by EST analysis. This gene showed structural similarity with BPI/LBP gene in mammals. The isolated gene was composed of 1638 bp, which translated to a protein of 473 amino acid residues. The predicted signal peptide was 18 amino acid residues and the LPS-binding domain is conserved in this sequence consisted of residues 57-121 amino acid residues. This LPS-binding domain had high identity (76.9%) to that of rainbow trout LBP/BPI-2. Phylogenetic analysis showed that carp BPI/LBP was similar to BPI or LBP of lipid-interactive protein family in mammals. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that carp BPI/LBP gene was expressed in normal liver, head kidney, spleen, intestine, gill, heart and brain. Liver and head kidney stimulated with LPS (10 microg/ml) for 3, 6, 12, 24 and 48 h expressed carp BPI/LBP gene at all stimulation time periods. Expression level of liver was higher than that of head kidney and high expressions in each tissues was recorded at 3h post-LPS stimulation. After 3h, BPI/LBP gene expression level was gradually become less in the stimulated times.
- Hubacek JA et al.
- Polymorphisms in the lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein in patients with myocardial infarction.
- Clin Chem Lab Med. 2002; 40: 1097-100
- Display abstract
Gram-negative bacterial infection, namely Chlamydia pneumoniae has been recently discussed as a risk factor for myocardial infarction. The lipopolysaccharide-binding protein (LBP) and the bactericidal/permeability-increasing protein (BPI) play a role in the processes leading to recognition and neutralisation of the Chlamydia pneumoniae and their endotoxins lipopolysaccharides (LPS). LPS interact with plasma LBP, and LBP-LPS complex activates monocytes/macrophages, which can influence the atherosclerotic process. BPI is cytotoxic for Gram-negative bacteria and BPI-LPS complexes do not activate monocytes. We have analysed the polymorphisms in the LBP gene (Gly98-->Cys; Pro436-->Leu) and BPI gene (Lys216-->Glu; PstI polymorphism in intron-5; G545-->C) in 313 patients after myocardial infarction (MI) and in 302 control individuals. Genotype frequencies in the LBP gene and BPI gene did not differ between MI patients and control individuals. Our findings suggest that LBP and BPI polymorphisms do not influence the risk of MI.
- Iovine N, Eastvold J, Elsbach P, Weiss JP, Gioannini TL
- The carboxyl-terminal domain of closely related endotoxin-binding proteins determines the target of protein-lipopolysaccharide complexes.
- J Biol Chem. 2002; 277: 7970-8
- Display abstract
The bactericidal/permeability increasing (BPI) and lipopolysaccharide (LPS)-binding (LBP) proteins are closely related two-domain proteins in which LPS binding is mediated by the NH(2)-terminal domain. To further define the role of the COOH-terminal domain of these proteins in delivery of LPS to specific host acceptors, we have compared interactions of LBP, BPI, LBP(N)-BPI(C) (NH(2)-terminal domain of LBP, COOH-terminal domain of BPI), and BPI(N)-LBP(C) with purified (3)H-LPS and, subsequently, with purified leukocytes and soluble (s)CD14. The COOH-terminal domain of LBP promotes delivery of LPS to CD14 on both polymorphonuclear leukocytes and monocytes resulting in cell activation. In the presence of Ca(2+) and Mg(2+), LBP and BPI each promote aggregation of LPS to protein-LPS aggregates of increased size (apparent M(r) > 20 x 10(6) Da), but only LPS associated with LBP and BPI(N)-LBP(C) is disaggregated in the presence of CD14. BPI and LBP(N)-BPI(C) promote apparently CD14-independent LPS association to monocytes without cell activation. These findings demonstrate that the carboxyl-terminal domain of these closely related endotoxin-binding proteins dictates the route and host responses to complexes they form with endotoxin.
- Inagawa H et al.
- Cloning and characterization of the homolog of mammalian lipopolysaccharide-binding protein and bactericidal permeability-increasing protein in rainbow trout Oncorhynchus mykiss.
- J Immunol. 2002; 168: 5638-44
- Display abstract
We cloned two cDNAs denoted as RT-LBP/BPI-1 and RT-LBP/BPI-2, respectively, which were derived from the mRNA of head kidney from rainbow trout. They showed structural homology with LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI) in mammals. The full-length cDNA of RT-LBP/BPI-1 and RT-LBP/BPI-2 is 1666 and 1741 bp, respectively. Both cDNAs encoded 473 aa residues, including the amino acids conserved in mammalian LBP and BPI proteins that were assumed to be involved in LPS binding. The overall coding sequence of RT-LBP/BPI-1 has 33% amino acid homology to human LBP and 34% to human BPI, and RT-LBP/BPI-2 has 32% amino acid homology to human LBP and 33% to human BPI. Three-dimensional structure analysis by three-dimensional/one-dimensional (3D-1D) methods also demonstrated that RT-LBP/BPI-1 and RT-LBP/BPI-2 proteins showed significant similarity to human BPI, having a boomerang shape with N-terminal and C-terminal barrels. Phylogenetic analysis showed that the LBP and BPI genes seemed to be established after the divergence of mammals from teleosts. These results suggested that RT-LBP/BPI-1 and RT-LBP/BPI-2 may be a putative ortholog for mammalian LBP and/or BPI genes. This is the first study to identify the LBP family genes from nonmammalian vertebrates.
- Yamashita S et al.
- Roles of plasma lipid transfer proteins in reverse cholesterol transport.
- Front Biosci. 2001; 6: 36687-36687
- Display abstract
Plasma lipid transfer proteins include plasma cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP). Plasma CETP facilitates the transfer of cholesteryl ester (CE) from high-density lipoprotein (HDL) to apolipoprotein (apo) B-containing lipoproteins, and is a key protein in reverse cholesterol transport which protects vessel walls from atherosclerosis. The importance of plasma CETP in lipoprotein metabolism was highlighted by the discovery of CETP-deficient subjects with a marked hyperalphalipoproteinemia (HALP). The deficiency of CETP causes various abnormalities in the concentration, composition, and functions of both HDL and low-density lipoprotein (LDL). Although the significance of CETP in terms of atherosclerosis has been controversial, the in vitro evidence showed that large CE-rich HDL particles in CETP deficiency are defective in cholesterol efflux. Recent epidemiological studies in Japanese-Americans and in Omagari area where HALP subjects with the intron 14 splicing defect of CETP gene are markedly frequent, have demonstrated an increased incidence of coronary atherosclerosis in CETP-deficient patients. Similarly, scavenger receptor BI (SR-BI) knockout mice show a marked increase in HDL-cholesterol but accelerated atherosclerosis in atherosclerosis-susceptible mice. Thus, CETP deficiency is a state of impaired reverse cholesterol transport which may possibly lead to the development of atherosclerosis. PLTP transfers phospholipids from triglyceride (TG)-rich lipoproteins to HDL during lipolysis. Human plasma PLTP has a 20% sequence homology to human CETP and human PLTP gene has a marked similarity in the exon-intron organization. Both CETP and PLTP belong to the lipid transfer/lipopolysaccharide binding protein (LBP) gene family, which also includes LBP and bactericidal/permeability-increasing protein (BPI). Although these 4 proteins possess different physiological functions, they share marked biochemical similarities. The current review will also focus on the molecular genetics and function of plasma lipid transfer proteins, including CETP and PLTP.
- Desrumaux C et al.
- A hydrophobic cluster at the surface of the human plasma phospholipid transfer protein is critical for activity on high density lipoproteins.
- J Biol Chem. 2001; 276: 5908-15
- Display abstract
The plasma phospholipid transfer protein (PLTP) belongs to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family, together with the cholesteryl ester transfer protein, the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI). In the present study, we used the crystallographic data available for BPI to build a three-dimensional model for PLTP. Multiple sequence alignment suggested that, in PLTP, a cluster of hydrophobic residues substitutes for a cluster of positively charged residues found on the surface of LBP and BPI, which is critical for interaction with lipopolysaccharides. According to the PLTP model, these hydrophobic residues are situated on an exposed hydrophobic patch at the N-terminal tip of the molecule. To assess the role of this hydrophobic cluster for the functional activity of PLTP, single point alanine mutants were engineered. Phospholipid transfer from liposomes to high density lipoprotein (HDL) by the W91A, F92A, and F93A PLTP mutants was drastically reduced, whereas their transfer activity toward very low density lipoprotein and low density lipoprotein did not change. The HDL size conversion activity of the mutants was reduced to the same extent as the PLTP transfer activity toward HDL. Based on these results, we propose that a functional solvent-exposed hydrophobic cluster in the PLTP molecule specifically contributes to the PLTP transfer activity on HDL substrates.
- Hubacek JA et al.
- Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis.
- Crit Care Med. 2001; 29: 557-61
- Display abstract
OBJECTIVES: To determine whether the genotype frequencies of the five bi-allelic polymorphisms in the bactericidal/permeability increasing protein (BPI) (Lys216 --> Glu; PstI polymorphism in intron 5; silent mutation G545 --> C) and the lipopolysaccharide binding protein (LBP) (Cys98 --> Gly; Pro436 --> Leu) are associated with the incidence and lethality of sepsis. DESIGN: Case control study of patients with sepsis. SETTING: Intensive care units within university hospitals. PATIENTS: A total of 204 patients diagnosed with sepsis and 250 healthy blood donors. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Short DNA fragments containing the polymorphic sites of the LBP and BPI locus were amplified by the polymerase chain reaction or mismatched polymerase chain reaction. The individual polymorphisms were determined with the appropriate restriction enzyme digestions and subsequent agarose gel electrophoresis. The presence of LBP genotypes with the less frequent Gly98 allele was found to be associated with sepsis (p < .02) in male patients, but not in females. Patients which were homozygote for either of the rare Gly98 (n = 6) and/or Leu436 (n = 5) LBP alleles, furthermore, exclusively were nonsurvivors of sepsis. The genotype frequencies in the BPI gene did not differ between patients and control individuals. CONCLUSIONS: Our findings suggest that common polymorphisms in the gene for LBP in combination with male gender are associated with an increased risk for the development of sepsis and, furthermore, may be linked to an unfavorable outcome. These data support the important immunomodulatory role of LBP in Gram-negative sepsis and suggest that genetic testing may be helpful for the identification of patients with an unfavorable response to Gram-negative infection.
- Yamashita S, Hirano K, Sakai N, Matsuzawa Y
- Molecular biology and pathophysiological aspects of plasma cholesteryl ester transfer protein.
- Biochim Biophys Acta. 2000; 1529: 257-75
- Display abstract
Plasma cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to apolipoprotein B-containing lipoproteins. Since CETP regulates the plasma levels of HDL cholesterol and the size of HDL particles, CETP is considered to be a key protein in reverse cholesterol transport, a protective system against atherosclerosis. CETP, as well as plasma phospholipid transfer protein, belongs to members of the lipid transfer/lipopolysaccharide-binding protein (LBP) gene family, which also includes the lipopolysaccharide-binding protein (LBP) and bactericidal/permeability-increasing protein. Although these four proteins possess different physiological functions, they share marked biochemical and structural similarities. The importance of plasma CETP in lipoprotein metabolism was demonstrated by the discovery of CETP-deficient subjects with a marked hyperalphalipoproteinemia (HALP). Two common mutations in the CETP gene, intron 14 splicing defect and exon 15 missense mutation (D442G), have been identified in Japanese HALP patients with CETP deficiency. The deficiency of CETP causes various abnormalities in the concentration, composition, and functions of both HDL and low density lipoprotein. Although the pathophysiological significance of CETP in terms of atherosclerosis has been controversial, the in vitro experiments showed that large CE-rich HDL particles in CETP deficiency are defective in cholesterol efflux. Epidemiological studies in Japanese-Americans and in the Omagari area where HALP subjects with the intron 14 splicing defect of CETP gene are markedly frequent, have shown an increased incidence of coronary atherosclerosis in CETP-deficient patients. The current review will focus on the recent findings on the molecular biology and pathophysiological aspects of plasma CETP, a key protein in reverse cholesterol transport.
- Kawano K, Qin SC, Lin M, Tall AR, Jiang XC
- Cholesteryl ester transfer protein and phospholipid transfer protein have nonoverlapping functions in vivo.
- J Biol Chem. 2000; 275: 29477-81
- Display abstract
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.
- Bulow E, Gullberg U, Olsson I
- Structural requirements for intracellular processing and sorting of bactericidal/permeability-increasing protein (BPI): comparison with lipopolysaccharide-binding protein.
- J Leukoc Biol. 2000; 68: 669-78
- Display abstract
The bactericidal/permeability-increasing protein (BPI), which is stored in the azurophil granules of neutrophils, and the circulating lipopolysaccharide-binding protein (LBP) share the same structure. Both bind lipopolysaccharide of gram-negative bacteria through their amino-terminal domains. The carboxy-terminal domain of BPI promotes bacterial attachment to phagocytes, whereas the corresponding domain of LBP delivers lipopolysaccharide to monocytes/macrophages. Our aim was to investigate the role of the amino-and carboxy-terminal domains of BPI and LBP for sorting and storage in myeloid cells after transfection of cDNA to two rodent hematopoietic cell lines. Full-length BPI and LBP were both targeted for storage in these cells. Deletion of the carboxy-terminal half of BPI resulted in storage followed by degradation while the reciprocal deletion of the amino-terminal half led to retention in the endoplasmic reticulum for proteasomal degradation. Chimeras between halves of BPI and LBP were also targeted for storage, but those containing carboxy-terminal BPI had the highest stability, again indicating a role for the carboxy-terminal domain of BPI in protection against degradation. Therefore, we propose a critical stability function for the hydrophobic carboxy-terminal domain of BPI during intracellular sorting for storage while the amino-terminal domain may confer targeting for storage.
- Vesy CJ, Kitchens RL, Wolfbauer G, Albers JJ, Munford RS
- Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes.
- Infect Immun. 2000; 68: 2410-7
- Display abstract
Although animals mobilize their innate defenses against gram-negative bacteria when they sense the lipid A moiety of bacterial lipopolysaccharide (LPS), excessive responses to this conserved bacterial molecule can be harmful. Of the known ways for decreasing the stimulatory potency of LPS in blood, the binding and neutralization of LPS by plasma lipoproteins is most prominent. The mechanisms by which host lipoproteins take up the native LPS that is found in bacterial membranes are poorly understood, however, since almost all studies of host-LPS interactions have used purified LPS aggregates. Using native Salmonella enterica serovar Typhimurium outer membrane fragments (blebs) that contained (3)H-labeled lipopolysaccharide (LPS) and (35)S-labeled protein, we found that two human plasma proteins, LPS-binding protein (LBP) and phospholipid transfer protein (PLTP), can extract [(3)H]LPS from bacterial membranes and transfer it to human high-density lipoproteins (HDL). Soluble CD14 (sCD14) did not release LPS from blebs yet could facilitate LBP-mediated LPS transfer to HDL. LBP, but not PLTP, also promoted the activation of human monocytes by bleb-derived LPS. Whereas depleting or neutralizing LBP significantly reduced LPS transfer from blebs to lipoproteins in normal human serum, neutralizing serum PLTP had no demonstrable effect. Of the known lipid transfer proteins, LBP is thus most able to transfer LPS from bacterial membranes to the lipoproteins in normal human serum.
- Riemens SC, Van Tol A, Stulp BK, Dullaart RP
- Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men.
- J Lipid Res. 1999; 40: 1467-74
- Display abstract
Lecithin:cholesteryl acyl transferase (LCAT), cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), and lipoprotein lipases are involved in high density lipoprotein (HDL) metabolism. We evaluated the influence of insulin sensitivity and of the TaqIB CETP gene polymorphism (B1B2) on plasma LCAT, CETP, and PLTP activities (measured with exogenous substrates) and their responses to hyperinsulinemia. Thirty-two non-diabetic men without hyperlipidemia were divided in quartiles of high (Q(1)) to low (Q(4)) insulin sensitivity. Plasma total cholesterol, very low + low density lipoprotein cholesterol, triglycerides, and apolipoprotein (apo) B were higher in Q(4) compared to Q(1) (P < 0.05 for all), whereas HDL cholesterol and apoA-I were lowest in Q(4) (P < 0.05 for both). Plasma LCAT activity was higher in Q(4) than in Q(1) (P < 0. 05) and PLTP activity was higher in Q(4) than in Q(2) (P < 0.05). Insulin sensitivity did not influence plasma CETP activity. Postheparin plasma lipoprotein lipase activity was highest and hepatic lipase activity was lowest in Q(1). Insulin infusion decreased PLTP activity (P < 0.05), irrespective of the degree of insulin sensitivity. The CETP genotype exerted no consistent effects on baseline plasma lipoproteins and LCAT, CETP, and PLTP activities. The decrease in plasma PLTP activity after insulin was larger in B1B1 than in B2B2 homozygotes (P < 0.05). These data suggest that insulin sensitivity influences plasma LCAT, PLTP, lipoprotein lipase, and hepatic lipase activities in men. As PLTP, LCAT, and hepatic lipase may enhance reverse cholesterol transport, it is tempting to speculate that high levels of these factors in association with insulin resistance could be involved in an antiatherogenic mechanism. A possible relationship between the CETP genotype and PLTP lowering by insulin warrants further study.
- Huuskonen J, Wohlfahrt G, Jauhiainen M, Ehnholm C, Teleman O, Olkkonen VM
- Structure and phospholipid transfer activity of human PLTP: analysis by molecular modeling and site-directed mutagenesis.
- J Lipid Res. 1999; 40: 1123-30
- Display abstract
The plasma phospholipid transfer protein (PLTP) is an important regulator of high density lipoprotein (HDL) metabolism. We have here, based on sequence alignments of the plasma LPS-binding/lipid transfer protein family and the X-ray structure of the bactericidal/permeability increasing protein (BPI), modeled the structure of PLTP. The model predicts a two-domain architecture with conserved lipid-binding pockets consisting of apolar residues in each domain. By site-directed mutagenesis of selected amino acid residues and transient expression of the protein variants in HeLa cells, the pockets are shown to be essential for PLTP-mediated phospholipid transfer. A solid phase ligand binding assay was used to determine the HDL-binding ability of the mutants. The results suggest that the observed decreases in phospholipid transfer activity of the N-terminal pocket mutants cannot be attributed to altered HDL-binding, but the C-terminal lipid-binding pocket may be involved in the association of PLTP with HDL. Further, the essential structural role of a disulfide bridge between cysteine residues 146 and 185 is demonstrated. The structural model and the mutants characterized here provide powerful tools for the detailed analysis of the mechanisms of PLTP function.
- Beamer LJ, Carroll SF, Eisenberg D
- The three-dimensional structure of human bactericidal/permeability-increasing protein: implications for understanding protein-lipopolysaccharide interactions.
- Biochem Pharmacol. 1999; 57: 225-9
- Display abstract
Gram-negative bacterial infections are often complicated by the inflammatory properties of lipopolysaccharides (LPS) on or released from the bacterial outer membrane. When present in the mammalian bloodstream, LPS can trigger a series of pathological changes, sometimes resulting in septic shock. Two related mammalian proteins, bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP), are known to affect the LPS-induced inflammatory response and are, therefore, of clinical interest. The recently determined three-dimensional structure of human BPI provides information on the overall protein fold, domain organization, and conserved regions of these two proteins. In addition, the discovery of two apolar lipid binding pockets in BPI indicates a possible site of interaction with LPS. The BPI structure is a powerful tool for the design of site-directed mutants, peptide mimetics/inhibitors, and BPI/LBP chimeras. These studies should help further define the functions of BPI and LBP, and their mechanism of interaction with LPS.
- Guyard-Dangremont V et al.
- Immunochemical evidence that cholesteryl ester transfer protein and bactericidal/permeability-increasing protein share a similar tertiary structure.
- Protein Sci. 1999; 8: 2392-8
- Display abstract
Cholesteryl ester transfer protein (CETP) plays an important role in plasma lipoprotein metabolism through its ability to transfer cholesteryl ester, triglyceride, and phospholipid between lipoproteins. CETP is a member of a gene family that also includes bactericidal/permeability-increasing protein (BPI). The crystal structure of BPI shows it to be composed of two domains that share a similar structural fold that includes an apolar ligand-binding pocket. As structurally important residues are conserved between BPI and CETP, it is thought that CETP and BPI may have a similar overall conformation. We have previously proposed a model of CETP structure based on the binding characteristics of anti-CETP monoclonal antibodies (mAbs). We now present a refined epitope map of CETP that has been adapted to a structural model of CETP that uses the atomic coordinates of BPI. Four epitopes composed of CETP residues 215-219, 219-223, 223-227, and 444-450, respectively, are predicted to be situated on the external surface of the central beta-sheet and a fifth epitope (residues 225-258) on an extended linker that connects the two domains of the molecule. Three other epitopes, residues 317-331, 360-366, and 393-410, would form part of the putative carboxy-terminal beta-barrel. The ability of the corresponding mAbs to compete for binding to CETP is consistent with the proximity of the respective epitopes in the model. These results thus provide experimental evidence that is consistent with CETP and BPI having similar surface topologies.
- Bruce C, Beamer LJ, Tall AR
- The implications of the structure of the bactericidal/permeability-increasing protein on the lipid-transfer function of the cholesteryl ester transfer protein.
- Curr Opin Struct Biol. 1998; 8: 426-34
- Display abstract
The cholesteryl ester transfer protein (CETP) is evolutionarily related to the bactericidal/permeability-increasing protein (BPI). The recently solved structure of BPI shows an elongated, boomerang-shaped molecule, with two hydrophobic pockets opening to its concave side. These pockets each contain a phospholipid molecule. A model of CETP, based on the recently solved crystal structure of BPI, provides the basis for interpreting functional studies on CETP. In this model, C-terminal residues 461-476, which were shown to be required for neutral lipid transfer between plasma lipoproteins, from an amphipathic helix covering the opening of the N-terminal pocket. A possible lipid-transfer mechanism for CETP, with the initial step involving the disordering of lipids in the lipoprotein surface, followed by the flipping and entry of a lipid molecule into the hydrophobic lipid-binding pocket, is hypothesized in light of structural evidence and recent studies.
- Bruce C, Chouinard RA Jr, Tall AR
- Plasma lipid transfer proteins, high-density lipoproteins, and reverse cholesterol transport.
- Annu Rev Nutr. 1998; 18: 297-330
- Display abstract
Cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) are members of the lipid transfer/lipopolysaccharide binding protein gene family. Recently, the crystal structure of one of the members of the gene family, bactericidal permeability increasing protein, was solved, providing potential insights into the mechanisms of action of CETP and PLTP. These molecules contain intrinsic lipid binding sites and appear to act as carrier proteins that shuttle between lipoproteins to redistribute lipids. The phenotype of human CETP genetic deficiency states and CETP transgenic mice indicates that CETP plays a major role in the catabolism of high-density lipoprotein (HDL) cholesteryl esters and thereby influences the concentration, apolipoprotein content, and size of HDL particles in plasma. PLTP also appears to have an important role in determining HDL levels and speciation. Recent data indicate that genetic CETP deficiency is associates with an excess of coronary heart disease in humans, despite increased HDL levels. Also, CETP expression is anti-atherogenic in many mouse models, even while lowering HDL. These data tend to support the reverse cholesterol transport hypothesis, i.e., that anti-atherogenic properties of HDL are related to its role in reverse cholesterol transport. Recently, another key molecule involved in this pathway was identified, scavenger receptor BI; this mediates the selective uptake of HDL cholesteryl esters in the liver and thus constitutes a pathway of reverse cholesterol transport parallel to that mediated by CETP. Reflecting its role in reverse cholesterol transport, the CETP gene is up-regulated in peripheral tissues and liver in responses to dietary or endogenous hypercholesterolemia. An analysis of the CETP proximal promoter indicates that it contains sterol regulatory elements highly homologous to those present in 3-hydroxy-3-methylglutaryl-coenzyme A reductase; the CETP gene is transactivated by the binding of SREBP-1 to these elements. A challenge for the future will be the manipulation of components of the reverse cholesterol transport pathway, such as CETP, PLTP, or scavenger receptor BI for therapeutic benefit.
- Guyard-Dangremont V, Desrumaux C, Gambert P, Lallemant C, Lagrost L
- Phospholipid and cholesteryl ester transfer activities in plasma from 14 vertebrate species. Relation to atherogenesis susceptibility.
- Comp Biochem Physiol B Biochem Mol Biol. 1998; 120: 517-25
- Display abstract
Cholesteryl ester and phospholipid transfer activities were determined in plasmas from 14 vertebrates, and lipid transfer values were analyzed in the light of the known atherogenesis susceptibility of studied species. Whereas cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) activities among vertebrate species were only measured in lipoprotein-deficient fractions in previous studies, both endogenous lipoprotein-dependent and endogenous lipoprotein-independent assays were used in the present work. In agreement with previous studies, a few species (chicken, man, rabbit and trout) displayed substantial CETP activity, whereas CETP activity was not detectable in other species (cow, dog, horse, mouse, pig, and rat). Additional species that were not studied before, i.e. cat, goat, and sheep, were shown to be deficient in plasma cholesteryl ester transfer activity, while duck was shown to constitute a new member of the high activity group. Unlike CETP activity, PLTP activity was detected in plasmas from all studied species, most of them being assayed here for the first time (cat, chicken, cow, duck, goat, horse, sheep, and trout). While dog, trout, mouse, and pig displayed the highest phospholipid transfer activity levels, the remarkable preservation of facilitated phospholipid transfers in plasma from all vertebrates might indicate an essential role of PLTP in vivo. Interestingly, animals with well-documented atherogenesis susceptibility (chicken, pig, rabbit, and man) displayed significantly higher mean CETP activity, but lower mean PLTP activity than known 'resistant' animals (cat, dog, mouse, and rat). In conclusion, the present study revealed marked differences in plasma lipid transfer activities between vertebrate species, and interspecies comparisons indicated that both CETP and PLTP may constitute two determinants of the atherogenicity of the plasma lipoprotein profile.
- Beamer LJ, Fischer D, Eisenberg D
- Detecting distant relatives of mammalian LPS-binding and lipid transport proteins.
- Protein Sci. 1998; 7: 1643-6
- Display abstract
In mammals, a family of four lipid binding proteins has been previously defined that includes two lipopolysaccharide binding proteins and two lipid transfer proteins. The first member of this family to have its three-dimensional structure determined is bactericidal/permeability-increasing protein (BPI). Using both the sequence and structure of BPI, along with recently developed sequence-sequence and sequence-structure similarity search methods, we have identified 13 distant members of the family in a diverse set of eukaryotes, including rat, chicken, Caenorhabditis elegans, and Biomphalaria galbrata. Although the sequence similarity between these 13 new members and any of the 4 original members of the BPI family is well below the "twilight zone," their high sequence-structure compatibility with BPI indicates they are likely to share its fold. These findings broaden the BPI family to include a member found in retina and brain, and suggest that a primitive member may have contained only one of the two similar domains of BPI.
- de Haas CJ, Haas PJ, van Kessel KP, van Strijp JA
- Affinities of different proteins and peptides for lipopolysaccharide as determined by biosensor technology.
- Biochem Biophys Res Commun. 1998; 252: 492-6
- Display abstract
Biosensor technology was employed to study the specific interactions of different lipopolysaccharide (LPS)-binding proteins and peptides with LPS, using an LPS-coated surface. Two methods to immobilize biotinylated LPS to streptavidin-coated sensor chips (SA-chips) were evaluated. Biotinylated LPS in PBS or biotinylated LPS, pretreated with EDTA and sodium-desoxycholate, were injected across an SA-chip, resulting in a 'high-' and 'low- mass' LPS chip, respectively. While the 'high mass' LPS chip appeared to be unstable, the 'low mass' LPS chip resulted in reproducible binding curves for bactericidal/permeability-increasing protein (rBPI21) with a binding affinity corresponding to the literature (Kd: 3.75 nM). New Kd values were obtained for serum amyloid P component (SAP, Kd: 3.9 nM), a recently discovered new LPS-binding protein, and cationic protein 18 (CAP18, Kd: 0.58 nM). Moreover, binding affinities of bioactive BPI- and SAP-derived peptides could be determined. This study shows for the first time the applicability of biosensor technology to study interactions of proteins and peptides with LPS, using an LPS-coated sensor chip.
- Beamer LJ, Carroll SF, Eisenberg D
- The BPI/LBP family of proteins: a structural analysis of conserved regions.
- Protein Sci. 1998; 7: 906-14
- Display abstract
Two related mammalian proteins, bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP), share high-affinity binding to lipopolysaccharide (LPS), a glycolipid found in the outer membrane of gram-negative bacteria. The recently determined crystal structure of human BPI permits a structure/function analysis, presented here, of the conserved regions of these two proteins sequences. In the seven known sequences of BPI and LBP, 102 residues are completely conserved and may be classified in terms of location, side-chain chemistry, and interactions with other residues. We find that the most highly conserved regions lie at the interfaces between the tertiary structural elements that help create two apolar lipid-binding pockets. Most of the conserved polar and charged residues appear to be involved in inter-residue interactions such as H-bonding. However, in both BPI and LBP a subset of conserved residues with positive charge (lysines 42, 48, 92, 95, and 99 of BPI) have no apparent structural role. These residues cluster at the tip of the NH2-terminal domain, and several coincide with residues known to affect LPS binding; thus, it seems likely that these residues make electrostatic interactions with negatively charged groups of LPS. Overall differences in charge and electrostatic potential between BPI and LBP suggest that BPI's bactericidal activity is related to the high positive charge of its NH2-terminal domain. A model of human LBP derived from the BPI structure provides a rational basis for future experiments, such as site-directed mutagenesis and inhibitor design.
- Amura CR, Kamei T, Ito N, Soares MJ, Morrison DC
- Differential regulation of lipopolysaccharide (LPS) activation pathways in mouse macrophages by LPS-binding proteins.
- J Immunol. 1998; 161: 2552-60
- Display abstract
LPS binding to its receptor(s) on macrophages induces the synthesis of inflammatory mediators involved in septic shock. While the signaling mechanism(s) remains to be fully defined, the human LPS-binding protein (LBP) is known to regulate responses to LPS by facilitating its binding to CD14 on human monocytes. The structurally related bactericidal permeability increasing protein (BPI) differs from LBP by inhibiting LPS-induced human monocyte activation. We have demonstrated that, unlike the human monocyte response to LPS, both LBP and BPI inhibited LPS-stimulated TNF-alpha production in mouse peritoneal macrophages. In contrast, LPS-dependent nitric oxide release was not affected by LBP. LPS induces the phosphorylation of a number of proteins in a dose and time-dependent manner, however, the pattern of LPS-induced phosphorylation was not reduced by either LBP or BPI under conditions that result in selective TNF-alpha inhibition. Further, activation of the transcription factor NF-kappaB in response to LPS was also not modified by either LBP or BPI. Finally, no differences were detected in TNF-alpha or inducible nitric oxide synthase mRNA accumulations induced by LPS in the presence or absence of either protein, whereas a slight decreased mRNA stability was observed in the group with LPS treatment. These results would suggest that many of the early signaling events contribute to LPS-induced macrophage signaling at a point preceding the divergence of pathways that differentially regulate TNF-alpha and NO production.
- Yu B, Hailman E, Wright SD
- Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids.
- J Clin Invest. 1997; 99: 315-24
- Display abstract
Lipopolysaccharide binding protein (LBP) is a plasma protein known to facilitate the diffusion of bacterial LPS (endotoxin). LBP catalyzes movement of LPS monomers from LPS aggregates to HDL particles, to phospholipid bilayers, and to a binding site on a second plasma protein, soluble CD14 (sCD14). sCD14 can hasten transfer by receiving an LPS monomer from an LPS aggregate, and then surrendering it to an HDL particle, thus acting as a soluble "shuttle" for an insoluble lipid. Here we show that LBP and sCD14 shuttle not only LPS, but also phospholipids. Phosphatidylinositol (PI), phosphatidylcholine, and a fluorescently labeled derivative of phosphatidylethanolamine (R-PE) are each transferred by LBP from membranes to HDL particles. The transfer could be observed using recombinant LBP and sCD14 or whole human plasma, and the plasma-mediated transfer of PI could be blocked by anti-LBP and partially inhibited by anti-CD14. sCD14 appears to act as a soluble shuttle for phospholipids since direct binding of PI and R-PE to sCD14 was observed and because addition of sCD14 accelerated transfer of these lipids. These studies define a new function for LBP and sCD14 and describe a novel mechanism for the transfer of phospholipids in blood. In further studies, we show evidence suggesting that LBP transfers LPS and phospholipids by reciprocal exchange: LBP-catalyzed binding of R-PE to LPS x sCD14 complexes was accompanied by the exit of LPS from sCD14, and LBP-catalyzed binding of R-PE to sCD14 was accelerated by prior binding of LPS to sCD14. Binding of one lipid is thus functionally coupled with the release of a second. These results suggest that LBP acts as a lipid exchange protein.
- Tobias PS, Soldau K, Iovine NM, Elsbach P, Weiss J
- Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS.
- J Biol Chem. 1997; 272: 18682-5
- Display abstract
Lipopolysaccharide (LPS)-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI) are closely related LPS-binding proteins whose binding to LPS has markedly different functional consequences. To gain better insight into the possible basis of these functional differences, the physical properties of LBP-LPS and BPI-LPS complexes have been compared in this study by sedimentation, light scattering, and fluorescence analyses. These studies reveal dramatic differences in the physical properties of LPS complexed to LBP versus BPI. They suggest that of the two proteins, only LBP can disperse LPS aggegates. However, BPI can enhance both the sedimentation velocity and apparent size of LPS aggregates while inhibiting LPS-LBP binding even at very low (1:40 to 1:20) BPI:LPS molar ratios.
- Iovine NM, Elsbach P, Weiss J
- An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N- and C-terminal domains.
- Proc Natl Acad Sci U S A. 1997; 94: 10973-8
- Display abstract
The host response to Gram-negative bacterial infection is influenced by two homologous lipopolysaccharide (LPS)-interactive proteins, LPS-binding protein (LBP) and the bacteridical/permeability-increasing protein (BPI). Both proteins bind LPS via their N-terminal domains but produce profoundly different effects: BPI and a bioactive N-terminal fragment BPI-21 exert a selective and potent antibacterial effect upon Gram-negative bacteria and suppress LPS bioactivity whereas LBP is not toxic toward Gram-negative bacteria and potentiates LPS bioactivity. The latter effect of LBP requires the C-terminal domain for delivery of LPS to CD14, so we postulated that the C-terminal region of BPI may serve a similar delivery function but to distinct targets. LBP, holoBPI, BPI-21, and LBP/BPI chimeras were compared for their ability to promote uptake by human phagocytes of an encapsulated, phagocytosis-resistant strain of Escherichia coli. We show that only bacteria preincubated with holoBPI are ingested by neutrophils and monocytes. These findings suggest that, when extracellular holoBPI is bound via its N-terminal domain to Gram-negative bacteria, the C-terminal domain promotes bacterial attachment to neutrophils and monocytes, leading to phagocytosis. Therefore, analogous to the role of the C-terminal domain of LBP in delivery of LPS to CD14, the C-terminal domain of BPI may fulfill a similar function in BPI-specific disposal pathways for Gram-negative bacteria.
- Kirschning CJ et al.
- Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins.
- Genomics. 1997; 46: 416-25
- Display abstract
The transfer of lipids in aqueous environments such as serum has been attributed to a recently characterized class of proteins. Abnormal regulation of serum lipids by these proteins is thought to be a key event in the pathophysiology of cardiovascular diseases. Lipopolysaccharide (endotoxin) binding protein (LBP) was identified by virtue of its ability to bind bacterial lipid A. We have analyzed the exon-intron organization of the LBP gene and the nucleotide sequence of its approximately 20 kb spanning 5'- and 3'-untranslated regions. When comparing the genomic organization of LBP with that of two other genes coding for lipid transfer proteins, significant homologies were found. The LBP gene includes 15 exons, and the 2-kb promoter contains recognition elements of acute phase-typical reactants and a repetitive 12-mer motif with an as yet unknown protein-binding property. Detailed sequence comparison revealed a closer relatedness of LBP with PLTP than with CETP as demonstrated by an almost identical intron positioning. This high degree of similarity supports functional studies by others suggesting that like LBP, PLTP may also be able to bind and transport bacterial lipopolysaccharide.
- Schumann RR, Lamping N, Hoess A
- Interchangeable endotoxin-binding domains in proteins with opposite lipopolysaccharide-dependent activities.
- J Immunol. 1997; 159: 5599-605
- Display abstract
Host defense against microorganisms involves proteins that bind specifically to bacterial endotoxins (LPS), causing different cellular effects. Although LPS-binding protein (LBP) can enhance LPS activities, while bactericidal/permeability-increasing protein (BPI) and Limulus anti-LPS factor (LALF) neutralize LPS, it has been proposed that their LPS-binding domains possess a similar structure. Here, we provide evidence that the LBP/LPS-binding domain is, as in the LALF structure, solvent exposed and therefore available for LPS binding. Our investigations into the activity of LPS-binding domains of different LPS-binding proteins, in the context of LBP, provide the first functional analysis of these domains in a whole protein. We constructed domain exchange hybrid proteins by substituting 12 amino acids of the LBP/LPS-binding domain with those of BPI and LALF and expressed them in Chinese hamster ovary cells. Although discrete point mutations within the LPS-binding domain of LBP disrupted its specific functions, the hybrid proteins were still able to bind LPS and, in addition, retained the wild-type LBP activity of enhancing LPS priming for FMLP-induced oxygen radical production by neutrophils and transferring LPS aggregates to CD14. Although BPI and LALF display opposite activities to LBP, and LALF does not share any sequence homology with LBP, our data provide strong evidence that LBP, BPI, and LALF possess a solvent-exposed, interchangeable LPS binding motif that is functionally independent of LPS transport or neutralization.
- Schumann RR et al.
- The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins.
- Mol Cell Biol. 1996; 16: 3490-503
- Display abstract
Acute-phase reactants (APRs) are proteins synthesized in the liver following induction by interleukin-1 (IL-1), IL-6, and glucocorticoids, involving transcriptional gene activation. Lipopolysaccharide-binding protein (LBP) is a recently identified hepatic secretory protein potentially involved in the pathogenesis of sepsis, capable of binding the bacterial cell wall product endotoxin and directing it to its cellular receptor, CD14. In order to examine the transcriptional induction mechanisms by which the LBP gene is activated, we have investigated the regulation of expression of its mRNA in vitro and in vivo as well as the organization of 5' upstream regulatory DNA sequences. We show that induction of LBP expression is transcriptionally regulated and is dependent on stimulation with IL-1beta, IL-6, and dexamethasone. By definition, LBP thus has to be viewed as a class 1 acute-phase protein and represents the first APR identified which is capable of detecting pathogenic bacteria. Furthermore, cloning of the LBP promoter revealed the presence of regulatory elements, including the common APR promoter motif APRE/STAT-3 (acute-phase response element/signal transducer and activator of transcription 3). Luciferase reporter gene assays utilizing LBP promoter truncation and point mutation variants indicated that transcriptional activation of the LBP gene required a functional APRE/STAT-3 binding site downstream of the transcription start site, as well as an AP-1 and a C/EBP (CCAAT enhancer-binding protein) binding site. Gel retardation and supershift assays confirmed that upon cytokine stimulation APRF/STAT-3 binds to its recognition site, leading to strong activation of the LBP gene. Unraveling of the mechanism of transcriptional activation of the LBP gene, involving three known transcription factors, may contribute to our understanding of the acute-phase response and the pathophysiology of sepsis and septic shock.
- Battafaraono RJ et al.
- Peptide derivatives of three distinct lipopolysaccharide binding proteins inhibit lipopolysaccharide-induced tumor necrosis factor-alpha secretion in vitro.
- Surgery. 1995; 118: 318-24
- Display abstract
BACKGROUND. Bactericidal permeability increasing protein (BPI), Limulus anti-lipopolysaccharide factor (LALF), and lipopolysaccharide binding protein (LBP) are three distinct proteins that bind to lipopolysaccharide (LPS). Intriguingly, binding of BPI and LALF to LPS results in neutralization of LPS activity, whereas the binding of LBP to LPS creates a complex that results in augmentation of LPS activity. Despite their different effector functions, we hypothesized that peptides based on the sequences of the proposed LPS-binding motif from each protein would neutralize LPS in vitro. METHODS. Three peptide sequences, each 27 amino acids in length, of the proposed LPS-binding motif of BPI (BG38), LALF (BG42), and LBP (BG43) were synthesized. These peptides were then tested for their: (1) ability to inhibit macrophage secretion of TNF-alpha after stimulation by LPS derived from Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens; and (2) bactericidal activity against these same four gram-negative bacteria in vitro. RESULTS. Synthetic peptides BG38 (BPI-derived), BG42 (LALF-derived), and BG43 (LBP-derived) but not control peptide significantly inhibited LPS-induced tumor necrosis factor-alpha secretion by macrophages and mediated the lysis of gram-negative bacteria in vitro. In addition, preincubation of LPS with peptide BG38 mediated complete protection subsequent to lethal endotoxin challenge. CONCLUSIONS. These data demonstrate that small peptides derived from BPI, LALF, and LBP retained significant endotoxin-neutralizing and bactericidal activity against many different gram-negative bacteria in vitro. Identification of this conserved LPS-binding region within each protein may aid in the development of new immunomodulatory reagents for use as adjuvant therapy in the treatment of gram-negative bacterial sepsis.
- Horwitz AH, Williams RE, Nowakowski G
- Human lipopolysaccharide-binding protein potentiates bactericidal activity of human bactericidal/permeability-increasing protein.
- Infect Immun. 1995; 63: 522-7
- Display abstract
Human bactericidal/permeability-increasing protein (BPI) from neutrophils and a recombinant amino-terminal fragment, rBPI23, bind to and are cytotoxic for gram-negative bacteria both in vitro and ex vivo in plasma or whole blood. To function in vivo as an extracellular bactericidal agent, rBPI23 must act in the presence of the lipopolysaccharide-binding protein (LBP), which also binds to but has no reported cytotoxicity for gram-negative bacteria. LBP, which is present at 5 to 10 micrograms/ml in healthy humans and at much higher levels in septic patients, mediates proinflammatory host responses to gram-negative infection. On the basis of these previous observations, we have examined the effect of recombinant LBP (rLBP) on the bactericidal activity of rBPI23 against Escherichia coli J5 in vitro. Physiological concentrations of rLBP (5 to 20 micrograms/ml) had little or no bactericidal activity but reduced by up to approximately 10,000-fold the concentration of BPI required for bactericidal or related activities in assays which measure (i) cell viability as CFUs on solid media or growth in broth culture and (ii) protein synthesis following treatment with BPI. LBP also potentiated BPI-mediated permeabilization of the E. coli outer membrane to actinomycin D by about 100-fold but had no permeabilizing activity of its own. Under optimal conditions for potentiation, fewer than 100 BPI molecules were required to kill a single E. coli J5 bacterium.
- Jiang XC, Bruce C, Cocke T, Wang S, Boguski M, Tall AR
- Point mutagenesis of positively charged amino acids of cholesteryl ester transfer protein: conserved residues within the lipid transfer/lipopolysaccharide binding protein gene family essential for function.
- Biochemistry. 1995; 34: 7258-63
- Display abstract
The cholesteryl ester transfer protein (CETP) binds to plasma lipoproteins and transfers neutral lipids between them. Previous studies showed that lipoprotein binding involves ionic interactions between CETP and lipoproteins, with increased binding of CETP to lipoproteins carrying increased negative charge. In order to understand the molecular determinants of lipoprotein binding in CETP, site-directed mutagenesis was carried out on positively charged amino acids within and outside regions of conserved sequence in the putative family of lipid transfer/lipopolysaccharide (LPS) binding proteins (LT/LBP). Within the conserved regions, two mutant proteins, K233A and R259D, were well secreted by the transfected cells but showed markedly reduced cholesteryl ester transfer activity. Separating the bound from free CETP by gel filtration after incubation with HDL, HDL binding by K233A was found to be impaired, suggesting that the binding deficiency of the mutant may be responsible for decreased transfer activity. Kinetic analysis showed a marked increase in the apparent Km but no change in Vmax, consistent with a lipoprotein binding defect. Thus, within CETP, K233 and R259 play an essential role in cholesteryl ester transfer activity probably by mediating binding of CETP to lipoproteins. Sequence alignment of CETP, phospholipid transfer protein, LPS binding protein, and bactericidal permeability-inducing protein showed that K223 and R259 were strictly conserved as positively charged amino acids, suggesting a common function within the LT/LBP gene family.
- Qi SY, Li Y, Szyroki A, Giles IG, Moir A, O'Connor CD
- Salmonella typhimurium responses to a bactericidal protein from human neutrophils.
- Mol Microbiol. 1995; 17: 523-31
- Display abstract
Bactericidal/permeability-increasing protein [BPI] is a cationic antimicrobial protein from neutrophils that specifically binds to the surfaces of Gram-negative bacteria via the lipid A component of lipopolysaccharide. To obtain information about the responses of Salmonella typhimurium to cell-surface damage by BPI, two-dimensional gel electrophoresis and N-terminal microsequencing were used to identify proteins that were induced or repressed following BPI treatment. The majority of the affected proteins are involved in central metabolic processes. Upon addition of BPI, the beta-subunit of the F1 portion of Escherichia coli ATP synthase was repressed threefold whereas six proteins were induced up to 11-fold. Three of the latter were identified as lipoamide dehydrogenase, enoyl-acyl carrier protein reductase, and the heat-shock protein HtpG. Additionally, a novel protein, BipA, was identified that is induced over sevenfold by BPI; sequence analysis suggests that it belongs to the GTPase superfamily and interacts with ribosomes. A conserved direct-repeat motif is present in the regulatory regions of several BPI-inducible genes, including the bipA gene. Only one of the BPI-responsive proteins was induced when cells were treated with polymyxin B, which also binds to lipid A. We therefore conclude that BPI and polymyxin B affect different global regulatory networks in S. typhimurium even though they bind with high affinity to the same cell-surface component.
- Tall A
- Plasma lipid transfer proteins.
- Annu Rev Biochem. 1995; 64: 235-57
- Display abstract
The plasma lipid transfer proteins mediate the transfer and exchange of phospholipids and neutral lipids between the plasma lipoproteins. The cholesteryl ester transfer protein (CETP) and the phospholipid transfer protein (PLTP) are members of the lipid transfer/lipopolysaccharide binding gene family. The CETP contains binding sites for cholesteryl ester and triglycerides and probably acts by a carrier-mediated mechanism. The CETP mediates catabolism of HDL cholesteryl esters, with secondary decreases in HDL size and protein content. The CETP plays a central role in reverse cholesterol transport i.e. the centripetal movement of cholesterol from the periphery back to the liver. CETP gene expression is upregulated in response to increased dietary cholesterol or endogenous hypercholesterolemia. Although CETP reduces HDL levels, its role in reverse cholesterol transport suggests a dominant anti-atherogenic action in vivo.
- Leeuwenberg JF, Dentener MA, Buurman WA
- Lipopolysaccharide LPS-mediated soluble TNF receptor release and TNF receptor expression by monocytes. Role of CD14, LPS binding protein, and bactericidal/permeability-increasing protein.
- J Immunol. 1994; 152: 5070-6
- Display abstract
Previously we demonstrated that two soluble(s) tumor necrosis factor receptors, TNF-R55 as well as sTNF-R75, are constitutively released in vitro by monocytes, and that this release was markedly enhanced after activation. Because LPS is an important activator of monocytes, we investigated the effect of LPS on sTNF-R release by monocytes. It was found that release of sTNF-R75, but not (or minimally) release of sTNF-R55, was enhanced after activation with LPS, reaching plateau levels after approximately 2 days. CD14, one of the membrane receptors for LPS, is an intermediate in this process, as shown in experiments using mAb directed against CD14. Under serum-free conditions, LPS-induced sTNF-R75 release was less as compared with release in the presence of serum, suggesting involvement of serum proteins. Addition of LPS binding protein (LBP) enhanced the LPS-induced sTNF-R75 release under serum-free conditions, but had no effect in the presence of serum. On the other hand, bactericidal/permeability-increasing protein (BPI), known to possess LPS neutralizing activity, inhibited LPS-induced sTNF-R75 release. Furthermore, cell surface expression of both types of TNF-R was shown to be controlled by LPS, LBP, and BPI. LPS caused, within 1 h, a complete reduction of TNF-R55 as well as TNF-R75 expression, followed by enhanced re-expression of both receptors after 24 h. The down-modulation of expression was increased by LBP, whereas BPI counteracted the LPS-induced down-regulation. The LPS-enhanced release of sTNF-R75, capable of inactivation of TNF, as well as LPS-induced initial down-modulation of TNF-R expression leading to postulated temporary unresponsiveness to TNF may share in a physiological mechanism to carefully control the effects of TNF.
- Wilde CG et al.
- Bactericidal/permeability-increasing protein and lipopolysaccharide (LPS)-binding protein. LPS binding properties and effects on LPS-mediated cell activation.
- J Biol Chem. 1994; 269: 17411-6
- Display abstract
We have previously shown that human bactericidal/permeability-increasing protein (BPI) is able to inhibit serum-dependent lipopolysaccharide (LPS)-mediated activation of human monocytes and neutrophils in vitro, and to counteract the lethal effects of LPS challenge in vivo. Lipopolysaccharide-binding protein (LBP) is a serum protein which participates in LPS-mediated activation of cells (Tobias, P. S., Mathison, J., Mintz, D., Lee, J. D., Kravchenko, V., Kato, K., Pugin, J., and Ulevitch, R. J. (1992) Am. J. Respir. Cell. Mol. Biol. 7, 239-245). We have proposed that BPI functions in a negative feedback loop which opposes this activation (Marra, M. N., Wilde, C. G., Collins, M. S., Snable, J. L., Thornton, M. B., and Scott, R. W. (1992) J. Immunol. 148, 532-537). We have now cloned and expressed recombinant forms of human BPI and LBP. Here we demonstrate that purified recombinant human LBP can replace the serum requirement for both LPS binding to human monocytes and LPS-mediated secretion of tumor necrosis factor alpha from these cells. These activities of LBP are inhibited by a neutralizing anti-CD14 monoclonal antibody. We further demonstrate that purified recombinant human BPI can inhibit LBP-mediated LPS binding to cells and their subsequent activation. Comparison of the LPS binding properties of BPI and LBP in enzyme-linked immunosorbent type assays and in the Limulus amebocyte lysate assay suggest that BPI has a stronger affinity for LPS than does LBP. Direct competition between BPI and LBP for LPS may explain the inhibition by BPI of the proinflammatory effects of LBP in the presence of LPS.
- Su GL et al.
- Molecular cloning, characterization, and tissue distribution of rat lipopolysaccharide binding protein. Evidence for extrahepatic expression.
- J Immunol. 1994; 153: 743-52
- Display abstract
LPS binding protein (LBP) is a glycoprotein present in normal serum that becomes markedly elevated during acute phase responses. LBP has been reported to greatly potentiate host responses to endotoxin or LPS. Therefore, LBP may play a critical role in the body's response to injury and infection. Little is known about the factors regulating production of LBP. To investigate the regulation of LBP expression, we have cloned the full-length cDNA for rat LBP. The deduced amino acid sequence of rat LBP was highly homologous with that reported for rabbit and human LBP. The sequence of rat LBP further refines the conserved regions found within the family of proteins that bind LPS; this family is comprised of bactericidal permeability-increasing protein and LBP from multiple species. Use of the rat LBP cDNA clone for Northern blot analysis reveals that LBP mRNA levels are markedly up-regulated in liver during acute phase responses. However, in contrast to previous reports, we also find evidence of extrahepatic expression of LBP under these induced conditions. The presence of LBP mRNA in activated tissues other than liver suggests that LBP may play a larger role in local tissue responses to LPS than previously appreciated.
- Gazzano-Santoro H et al.
- Competition between rBPI23, a recombinant fragment of bactericidal/permeability-increasing protein, and lipopolysaccharide (LPS)-binding protein for binding to LPS and gram-negative bacteria.
- Infect Immun. 1994; 62: 1185-91
- Display abstract
Lipopolysaccharide (LPS)-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI) are two structurally related lipid A-binding proteins with divergent functional activities. LBP mediates activation of macrophage and other proinflammatory cells. In contrast, BPI has potent bactericidal and LPS-neutralizing activities. A recombinant fragment of BPI (rBPI23) retains the potent biological activities of the holo protein and may represent a novel therapeutic agent for the treatment of gram-negative infections, sepsis, and endotoxemia. For therapeutic effectiveness in many clinical situations, rBPI23 will have to successfully compete with high serum levels of LBP for binding to endotoxin and gram-negative bacteria. The relative binding affinities of rBPI23 and human recombinant LBP (rLBP) for lipid A and gram-negative bacteria were evaluated. The binding of both proteins to lipid A was specific and saturable with apparent Kds of 2.6 nM for rBPI23 and 58 nM for rLBP. rBPI23 was approximately 75-fold more potent than rLBP in inhibiting the binding of 125I-rLBP to lipid A. The binding affinity of rBPI23 (Kd = 70 nM) for Escherichia coli J5 bacteria was also significantly higher than that of rLBP (Kd = 1,050 nM). In addition, rBPI23 at 0.2 micrograms/ml was able to inhibit LPS-induced tumor necrosis factor release from monocytes in the presence of 20 micrograms of rLBP per ml. These results demonstrate that rBPI23 binds more avidly to endotoxin than does rLBP and that, even in the presence of a 100-fold weight excess of rLBP, rBPI23 effectively blocks the proinflammatory response of peripheral blood mononuclear cells to endotoxin.
- Qi SY, Li Y, O'Connor CD
- The region around residue 115 of human bactericidal/permeability-increasing protein is not involved in lipopolysaccharide binding or bactericidal activity. Chemical synthesis and expression of a gene coding for the active domain and characterization of recombinant proteins.
- Biochem J. 1994; 298: 711-8
- Display abstract
Bactericidal/permeability-increasing protein (BPI) is a potent antimicrobial agent produced by polymorphonuclear leucocytes that specifically interacts with and kills Gram-negative bacteria. An 825 bp gene determining the bactericidal N-terminal domain of human BPI was chemically synthesized and expressed as inclusion bodies in Escherichia coli. The recombinant polypeptide, BPI', was solubilized and conditions under which it folded to give the active protein were determined. Folding was critically dependent on the urea and salt concentrations as well as the pH. BPI' bound with high affinity to Salmonella typhimurium cells (apparent Kd = 36 nM), permeabilized their outer membranes to actinomycin D, specifically activated a synovial fluid phospholipase A2 and showed potent bactericidal activity. In contrast with the native protein, however, it could not be efficiently released from the cell surface by the addition of high concentrations of Mg2+ ions. Pre-incubation of the protein with lipopolysaccharide or trypsin prevented cytotoxicity. However, boiling BPI' immediately before its addition to cells did not block its bactericidal activity, suggesting that it may be able to function even when presented to cells in an unfolded form. A BPI' derivative, containing a 13-residue foreign antigenic determinant genetically inserted between Ala115 and Asp116, was also produced. The derivative was functional in the above assays and bound with high affinity to S. typhimurium (apparent Kd = 74 nM). These results imply that the region defined by these residues is not involved in the lipopolysaccharide-binding or bactericidal activities of BPI. The availability of functional, nonglycosylated recombinant derivatives of BPI should greatly aid detailed studies on its structure, interactions with lipopolysaccharide and mechanism of action.
- Calvano SE et al.
- Changes in polymorphonuclear leukocyte surface and plasma bactericidal/permeability-increasing protein and plasma lipopolysaccharide binding protein during endotoxemia or sepsis.
- Arch Surg. 1994; 129: 220-6
- Display abstract
OBJECTIVE: To evaluate changes in levels of polymorphonuclear leukocyte surface bactericidal/permeability-increasing protein (BPI), plasma BPI, and plasma lipopolysaccharide (LPS) binding protein (LBP) in normal human volunteers administered Escherichia coli LPS and in patients with sepsis and gram-negative infections. DESIGN: Survey; case series. SETTING: Clinical research center and surgical intensive care unit of a medical school and an associated tertiary care hospital. PATIENTS OR OTHER PARTICIPANTS: Volunteers (n = 10) screened prior to study by history and physical examination to exclude those with underlying diseases or hematologic abnormalities. Consecutive sample of surgical intensive care unit patients (n = 10) meeting criteria for sepsis syndrome with gram-negative infection. An additional patient with systemic inflammatory response syndrome but no gram-negative infection. All patients were studied on meeting the criteria. Three of the patients with sepsis syndrome and the patient with systemic inflammatory response syndrome were evaluated on recovery (approximately 25 days after initial study). Because these studies in volunteers and patients overlapped temporally, the control values were those of volunteers evaluated prior to LPS administration. No matching was employed. MEASUREMENTS AND RESULTS: Compared with controls, LPS-challenged volunteers and patients with sepsis both exhibited significant granulocytosis (P < .01) and increased concentrations of polymorphonuclear leukocyte surface BPI (P < .01) and of plasma LBP (P < .01). Plasma BPI concentrations were increased (P < .01) in volunteers following LPS administration. There was a trend toward increased concentrations of plasma BPI in patients, but this was not significant relative to controls. Maximum concentrations of plasma LBP were approximately 250- and 3000-fold higher than plasma BPI concentrations in endotoxemic volunteers and in patients, respectively. CONCLUSIONS: Circulating polymorphonuclear leukocytes increase expression of BPI in response to LPS or gram-negative sepsis. Subsequently, concentrations of plasma BPI and LBP increase. Because both LBP and BPI bind to LPS, it is suggested that endogenously derived plasma levels of BPI are likely to be inadequate to compete for LPS binding to the much more abundant LBP in the circulation.
- Dentener MA, Von Asmuth EJ, Francot GJ, Marra MN, Buurman WA
- Antagonistic effects of lipopolysaccharide binding protein and bactericidal/permeability-increasing protein on lipopolysaccharide-induced cytokine release by mononuclear phagocytes. Competition for binding to lipopolysaccharide.
- J Immunol. 1993; 151: 4258-65
- Display abstract
Serum proteins play an important role in LPS-induced cell activation. The LPS binding protein (LBP) enhances cellular responses to LPS, whereas the polymorphonuclear leukocyte product bactericidal/permeability-increasing protein (BPI) inhibits LPS-induced cell activation. In this study the influences of LBP and BPI, two proteins with opposite effects, but with considerable sequence homology, on LPS-induced mononuclear phagocytic cell cytokine release was studied. LBP was shown to enhance LPS-induced TNF-alpha, IL-6, and IL-8 release by mononuclear phagocytic cells, whereas BPI inhibited the release of these cytokines. Furthermore, the effects of LBP and BPI on LPS-induced cytokine release by mononuclear phagocytic cells were shown to be counteractive. BPI interfered with the enhancing effect of LBP on the LPS-induced cytokine release. At high LBP to BPI ratios, BPI could no longer inhibit LBP-induced enhancement. In accordance, increasing concentrations of BPI abrogated the LBP effect. Next, it was shown that LBP and BPI compete for binding to LPS by using an assay system that detects binding of free BPI to an anti-BPI mAb. LPS prevented binding of BPI to anti-BPI mAb, whereas preincubation of LPS with LBP prevented the LPS-induced inhibition. Also, it was observed that both BPI and LBP inhibited LPS activity in the chromogenic LAL assay. We conclude from this study that LBP and BPI have counteractive effects on LPS-induced mononuclear phagocytic cell cytokine release by competing for binding to LPS.
- Gray PW, Corcorran AE, Eddy RL Jr, Byers MG, Shows TB
- The genes for the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI) are encoded in the same region of human chromosome 20.
- Genomics. 1993; 15: 188-90
- Display abstract
The lipopolysaccharide binding protein is an acute-phase reactant produced during gram-negative bacterial infections. The bactericidal/permeability increasing protein is associated with human neutrophil granules and has bactericidal activity on gram-negative organisms. In addition to their functional relationship, both proteins share extensive structural similarity. This article demonstrates that the genes for both proteins are in the same region of human chromosome 20, between q11.23 and q12.
- Marra MN et al.
- Regulation of the response to bacterial lipopolysaccharide by endogenous and exogenous lipopolysaccharide binding proteins.
- Blood Purif. 1993; 11: 134-40
- Display abstract
Bactericidal/permeability-increasing protein (BPI) is a natural constituent of human neutrophils. Recombinant BPI has been shown to bind to bacterial lipopolysaccharide (LPS), and to neutralize the ability of LPS to stimulate inflammatory cells in vitro and in vivo. BPI shares sequence homology and immunocrossreactivity with another endogenous LPS binding protein, lipopolysaccharide binding protein (LBP). Despite the homology, these proteins have opposite effects on LPS. LBP mediates cell activation by low, otherwise nonstimulatory concentrations, while BPI neutralizes LPS bioactivity. Exogenous LPS binding proteins in the form of monoclonal antibodies have been developed with the goal of generating antiendotoxin therapeutics to treat gram-negative sepsis and related syndromes. Here we show that LPS-binding and neutralizing properties of BPI compare favorably with two monoclonal antibodies tested, HA-1A and XMMEN-OE5. BPI also competes effectively with LBP for LPS. Thus, BPI may represent an endogenous LPS-regulatory molecule suitable for use as a potent antiendotoxin therapeutic.
- Heumann D, Gallay P, Betz-Corradin S, Barras C, Baumgartner JD, Glauser MP
- Competition between bactericidal/permeability-increasing protein and lipopolysaccharide-binding protein for lipopolysaccharide binding to monocytes.
- J Infect Dis. 1993; 167: 1351-7
- Display abstract
The bactericidal/permeability-increasing protein (BPI) inhibits the lipopolysaccharide (LPS)-mediated activation of monocytes. Due to its inhibitory activity for various LPS, BPI has therapeutic potential in endotoxic shock. To be efficient in vivo, BPI should overcome the action of LPS-binding protein (LBP), a serum molecule that increases the expression of LPS-inducible genes via CD14 of monocytes, rBPI23, a recombinant fragment of BPI, prevented in a dose-dependent manner the binding and the internalization of LPS mediated by LBP. Consequently, rBPI23 also inhibited LPS-induced tumor necrosis factor (TNF alpha) synthesis from monocytes. LPS- and LBP-mediated activation of monocytes was totally inhibited when LPS was preincubated with rBPI23. Adding rBPI23 at the same time as LBP resulted in an important but partial inhibition of TNF alpha release, but this inhibition vanished with delaying the time of addition of rBPI23. These studies suggest that the inhibitory activity of BPI is related to its ability to compete with LBP for LPS.
- Weersink AJ et al.
- Human granulocytes express a 55-kDa lipopolysaccharide-binding protein on the cell surface that is identical to the bactericidal/permeability-increasing protein.
- J Immunol. 1993; 150: 253-63
- Display abstract
Several LPS-binding proteins have been identified on the surface of human granulocytes (polymorphonuclear leukocyte (PMN)). We describe a plasma-membrane associated ca. 55-kDa LPS-binding protein of human PMN that is indistinguishable from the bactericidal/permeability-increasing protein (BPI). To detect LPS-binding proteins on the cell surface, PMN were biotinylated before detergent solubilization and incubation with LPS-coated beads. Several biotinylated proteins bound to LPS-coated beads but not to uncoated beads and were characterized after elution with detergent by SDS-PAGE and western blotting using streptavidin-horseradish peroxidase. The spectrum of biotinylated proteins binding to and eluting from LPS-coated beads increased as the number of beads incubated with PMN lysate increased. However, at all concentrations of beads a 55-kDa protein was a dominant component of the eluate. Binding of the 55-kDa protein to LPS-coated beads was inhibited by lipid A, and both homologous and heterologous LPS, but not by peptidoglycan. Similar amounts of biotinylated 55-kDa LPS-binding protein were detected on PMN from patients with paroxysmal nocturnal hemoglobinuria who lacked membrane bound CD14, a known ca. 55-kDa plasma membrane-associated LPS-binding protein, indicating that the recovered biotinylated protein is not CD14. Several pieces of evidence, however, do indicate that the 55-kDa surface protein is BPI: 1) flow cytometry of PMN after labeling with rabbit anti-BPI serum and FITC-labeled goat anti-rabbit IgG revealed immunoreactive surface molecules on resting PMN and, in increased amounts, on PMN stimulated with FMLP or TNF; 2) This antiserum specifically and quantitatively inhibited binding of the biotinylated 55-kDa species to LPS-coated beads; 3) both BPI and the 55-kDa protein migrated as a doublet during SDS-PAGE and were both converted to single migrated species after N-glycosidase F treatment; 4) chemical cleavage of the biotinylated protein and native BPI with N-chlorosuccinimide yielded the same fragments. Thus, we have positively identified BPI as a LPS-binding protein on the surface of PMN. The role of this potent antibacterial, endotoxin neutralizing protein on the surface of PMN remains to be established.
- Mathison JC, Tobias PS, Wolfson E, Ulevitch RJ
- Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS.
- J Immunol. 1992; 149: 200-6
- Display abstract
LPS-binding protein (LBP) binds with high affinity (Kd approximately equal to 10(-9) M) to lipid A of LPS isolated from rough (R)- or smooth (S)-form Gram-negative bacteria as well as to lipid A partial structures such as precursor IVA. To define the role of LBP in regulating responses to LPS we have examined TNF release in rabbit peritoneal exudate macrophages (M phi) stimulated with LPS or with complete or partial lipid A preparations in the presence or absence of LBP. In the presence of LBP, M phi showed increased sensitivity to S- and R-form LPS as well as synthetic lipid A. Compared with LPS or lipid A, up to 1000-fold greater concentrations of partial lipid A structures were required to induce TNF production. However, consistent with our previous observations that these structures bind to LBP, TNF production was increased in the presence of LBP. In contrast, LBP did not enhance or inhibit TNF production produced by heat-killed Staphylococcus aureus, peptidoglycan isolated from S. aureus cell walls, or PMA. Potentiated M phi responsiveness to LPS was observed with as little as 1 ng LBP/ml. Heat-denatured LBP (which no longer binds LPS), BPI (an homologous LPS-binding protein isolated from neutrophils), or other serum proteins were without effect. LBP-treated M phi also showed a more rapid induction of cytokine mRNA (TNF and IL-1 beta), higher steady-state mRNA levels and increased TNF mRNA stability. These data provide additional evidence that LBP is part of a highly specific recognition system controlling M phi responses to LPS. The effects of LBP are lipid A dependent and importantly, extend to LPS preparations isolated from bacteria of R- and S-form phenotype.
- Leong SR, Camerato T
- Nucleotide sequence of the bovine bactericidal permeability increasing protein (BPI).
- Nucleic Acids Res. 1990; 18: 3052-3052
- Tobias PS, Mathison JC, Ulevitch RJ
- A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis.
- J Biol Chem. 1988; 263: 13479-81
- Display abstract
The lipopolysaccharides (LPS) of Gram-negative bacteria initiate potentially fatal processes in many host organisms. Recently published amino acid sequence data suggest that there is a family of LPS binding proteins that may participate in the host response to Gram-negative bacteremia. The first two members of the family to be identified are an LPS binding protein present in serum after an acute phase response in humans, mice, rabbits, and rats and a bactericidal/permeability increasing protein present in the primary granules of human and rabbit neutrophils. LPS binding protein and bactericidal/permeability increasing protein share an ability to bind to LPS, have homologous NH2-terminal amino acid sequences, and are immunologically cross-reactive. Nevertheless, these two molecules differ in their effects on LPS and Gram-negative bacteria, in their sites of biosynthesis, and localization in vivo.