Secondary literature sources for DENN
The following references were automatically generated.
- Gu Y, Li S, Lord EM, Yang Z
- Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth.
- Plant Cell. 2006; 18: 366-81
- Display abstract
Rho family small GTPases are signaling switches controlling many eukaryotic cellular processes. Conversion from the GDP- to GTP-bound form is catalyzed by guanine nucleotide exchange factors (GEFs). Rho GEFs in animals fall into two structurally distinct classes containing DH and DOCKER catalytic domains. Using a plant Rho GTPase (ROP1) as bait in yeast two-hybrid screens, we identified a family of Rho GEFs, named RopGEFs. The Arabidopsis thaliana RopGEF family of 14 members contains a conserved central domain, the domain of unknown function 315 (DUF315), and variable N- and C-terminal regions. In vitro GEF assays show that DUF315 but not the full-length version of RopGEF1 has high GEF activity toward ROP1. Our data suggest that the variable regions of RopGEF1 are involved in regulation of RopGEF through an autoinhibitory mechanism. RopGEF1 overexpression in pollen tubes produced growth depolarization, as does a constitutively active ROP1 mutant. The RopGEF1 overexpression phenotype was suppressed by expression of a dominant-negative mutant of ROP1, probably by trapping RopGEF1. Deletion mutant analysis suggested a requirement of RopGEF activity for the function of RopGEF1 in polar growth. Green fluorescent protein-tagged RopGEF1 was localized to the tip of pollen tubes where ROP1 is activated. These results provide strong evidence that RopGEF1 activates ROP1 in control of polar growth in pollen tubes.
- Perani M et al.
- The proto-oncoprotein SYT interacts with SYT-interacting protein/co-activator activator (SIP/CoAA), a human nuclear receptor co-activator with similarity to EWS and TLS/FUS family of proteins.
- J Biol Chem. 2005; 280: 42863-76
- Display abstract
The proto-oncoprotein SYT is involved in the unique translocation t(X;18) found in synovial sarcoma SYT-SSX fusions. SYT has a conserved N-terminal domain (SNH domain) that interacts with the human paralog of Drosophila Brahma (hBRM) and Brahma-related gene 1 (BRG1) chromatin remodeling proteins and a C-terminal transactivating sequence rich in glutamine, proline, glycine, and tyrosine (QPGY domain). Here we reported the isolation of the ribonucleoprotein SYT-interacting protein/co-activator activator (SIP/CoAA), which specifically binds the QPGY domain of SYT and also the SYT-SSX2 translocation fusion. SIP/CoAA is a general nuclear co-activator and an RNA splicing modulator that contains two RNA recognition motifs and multiple hexapeptide repeats. We showed that the region consisting of the hexapeptide motif (YQ domain) is similar to the hexapeptide repeat domain found in EWS and in TLS/FUS family proteins. The YQ domain also resembles the QPGY region of SYT itself and like all these other domains acts as a transcriptional activator in reporter assays. Most interestingly, the last 84 amino acids adjacent to YQ down-modulate by 25-fold the YQ transactivation of the reporter gene, and both domains are important for SIP/CoAA binding to SYT. In addition, SYT acts together with SIP/CoAA in stimulating estrogen and glucocorticoid receptor-dependent transcriptional activation. Activation is hormone-dependent and requires functional hBRM and/or BRG1. The stimulation is strongly reduced if the N-terminal region of hBRM/BRG1 (amino acids 1-211) is deleted. This region encompasses the SNF11 binding domain (amino acids 156-211), which interacts specifically with SYT in vivo and in vitro.
- Smith WJ, Hamel B, Yohe ME, Sondek J, Cerione RA, Snyder JT
- A Cdc42 mutant specifically activated by intersectin.
- Biochemistry. 2005; 44: 13282-90
- Display abstract
The Rho family GTPase Cdc42 functions as a molecular switch and controls many fundamental cellular processes such as cytoskeletal regulation, cell polarity, and vesicular trafficking. Guanine nucleotide exchange factors of the Dbl family activate Cdc42 and other Rho GTPases by catalyzing the removal of bound GDP, allowing for GTP loading, and subsequent effector recognition ultimately leading to downstream signaling events. Analysis of existing structural data reveals that the Dbl exchange factor intersectin engages a strictly conserved GTPase residue of Cdc42 (tyrosine 32) in a unique mode with respect to all other visualized exchange factor-Rho GTPase interfaces. To investigate this differential binding architecture, we analyzed the role of tyrosine 32 of Cdc42 in binding, and stimulation by Dbl family exchange factors. Deletion of the hydroxyl side chain of tyrosine 32 substantially increases the affinity of Cdc42 for intersectin, yet severely cripples interaction with Dbs, a normally potent exchange factor of Cdc42. Moreover, Cdc42(Y32F) is exclusively activated by intersectin, while virtually unresponsive to other Cdc42-activating exchange factors in vitro and in vivo. Further, the structural determinants unique to intersectin, which permit selective recognition and concomitant stimulation of Cdc42(Y32F), have been defined. Cdc42 and other individual Rho GTPases receive input stimulatory signals from a multitude of Dbl exchange factors, and therefore, Cdc42(Y32F) could act as a valuable reagent for understanding the specific influence of ITSN on Cdc42-mediated signaling phenomena.
- Sakisaka T, Takai Y
- Purification and properties of Rab3 GEP (DENN/MADD).
- Methods Enzymol. 2005; 403: 254-61
- Display abstract
Rab3A, a member of the Rab3 small GTP-binding protein (G protein) family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. Rab3A cycles between the GDP-bound inactive and GTP-bound active forms, and the former is converted to the latter by the action of a GDP/GTP exchange protein (GEP). We have previously purified a GEP from rat brain with lipid-modified Rab3A as a substrate. Purified Rab3 GEP is active on all the Rab3 subfamily members including Rab3A, -3B, -3C, and -3D. Purified Rab3 GEP is active on the lipid-modified form, but not on the lipid-unmodified form. Purified Rab3 GEP is inactive on Rab3A complexed with Rab GDI. The recombinant protein is prepared from the Rab3 GEP-expressed Spodoptera frugiperda cells (Sf9 cells). The properties of recombinant Rab3 GEP, including the requirement for lipid modifications of Rab3A, the substrate specificity, and the sensitivity to Rab GDI, are similar to those of purified Rab3 GEP. Overexpression of Rab3 GEP inhibits Ca(2+)-dependent exocytosis from PC12 cells. On the other hand, Rab3 GEP is identical to a protein named DENN/MADD: differentially expressed in normal versus neoplastic (DENN)/mitogen-activated protein kinase-activating death domain (MADD). Here, we describe the purification method for recombinant Rab3 GEP from Sf9 cells and the functional properties of Rab3 GEP in Ca(2+)-dependent exocytosis by use of the human growth hormone coexpression assay system of PC12 cells.
- Tse SW et al.
- Identification, expression analysis, genomic organization and cellular location of a novel protein with a RhoGEF domain.
- Gene. 2005; 359: 63-72
- Display abstract
In this study we describe the identification and characterization of a novel cytosolic protein of the guanine exchange factor (GEF) family. The human cDNA corresponds to predicted human protein FLJ00128/FLJ10357 located on chromosome 14q11.2. The deduced protein sequence contains in its C-terminus a RhoGEF domain followed by a pleckstrin domain. Its N-terminus, central region and RhoGEF/pleckstrin domain are homologous to the recently identified zebrafish Quattro protein, which is involved in morphogenetic movements mediated by the actin cytoskeleton. Based on the homology of our protein's RhoGEF domain to the RhoGEF domains of Trio, Duo and Duet and its homology with Quattro, we named it Solo. The Solo mRNA is ubiquitously expressed but enriched in brain, its expression peaks perinatally and it undergoes extensive alternative splicing. In both myoblasts and neuroblastoma cells, the Solo protein is concentrated around the nucleus.
- Mouratou B et al.
- The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf.
- BMC Genomics. 2005; 6: 20-20
- Display abstract
BACKGROUND: Small G proteins, which are essential regulators of multiple cellular functions, are activated by guanine nucleotide exchange factors (GEFs) that stimulate the exchange of the tightly bound GDP nucleotide by GTP. The catalytic domain responsible for nucleotide exchange is in general associated with non-catalytic domains that define the spatio-temporal conditions of activation. In the case of small G proteins of the Arf subfamily, which are major regulators of membrane trafficking, GEFs form a heterogeneous family whose only common characteristic is the well-characterized Sec7 catalytic domain. In contrast, the function of non-catalytic domains and how they regulate/cooperate with the catalytic domain is essentially unknown. RESULTS: Based on Sec7-containing sequences from fully-annotated eukaryotic genomes, including our annotation of these sequences from Paramecium, we have investigated the domain architecture of large ArfGEFs of the BIG and GBF subfamilies, which are involved in Golgi traffic. Multiple sequence alignments combined with the analysis of predicted secondary structures, non-structured regions and splicing patterns, identifies five novel non-catalytic structural domains which are common to both subfamilies, revealing that they share a conserved modular organization. We also report a novel ArfGEF subfamily with a domain organization so far unique to alveolates, which we name TBS (TBC-Sec7). CONCLUSION: Our analysis unifies the BIG and GBF subfamilies into a higher order subfamily, which, together with their being the only subfamilies common to all eukaryotes, suggests that they descend from a common ancestor from which species-specific ArfGEFs have subsequently evolved. Our identification of a conserved modular architecture provides a background for future functional investigation of non-catalytic domains.
- Johnston CA et al.
- Structure of Galpha(i1) bound to a GDP-selective peptide provides insight into guanine nucleotide exchange.
- Structure. 2005; 13: 1069-80
- Display abstract
Heterotrimeric G proteins are molecular switches that regulate numerous signaling pathways involved in cellular physiology. This characteristic is achieved by the adoption of two principal states: an inactive, GDP bound state and an active, GTP bound state. Under basal conditions, G proteins exist in the inactive, GDP bound state; thus, nucleotide exchange is crucial to the onset of signaling. Despite our understanding of G protein signaling pathways, the mechanism of nucleotide exchange remains elusive. We employed phage display technology to identify nucleotide state-dependent Galpha binding peptides. Herein, we report a GDP-selective Galpha binding peptide, KB-752, that enhances spontaneous nucleotide exchange of Galpha(i) subunits. Structural determination of the Galpha(i1)/peptide complex reveals unique changes in the Galpha switch regions predicted to enhance nucleotide exchange by creating a GDP dissociation route. Our results cast light onto a potential mechanism by which Galpha subunits adopt a conformation suitable for nucleotide exchange.
- Del Villar K, Miller CA
- Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer's disease brain and hippocampal neurons.
- Proc Natl Acad Sci U S A. 2004; 101: 4210-5
- Display abstract
Tumor necrosis factor (TNF) alpha and mitogen-activated protein kinase/c-Jun N-terminal kinase (MAPK/JNK) pathways are both implicated in Alzheimer's disease (AD) pathogenesis. Increased expression of several members of the TNF pathway and JNK activation of c-Jun ultimately result in neuronal apoptosis. DENN/MADD, a multifunctional domain protein expressed in neurons, interacts with both the p55 TNF receptor (TNFR) type 1 and JNK3, placing it at a critical juncture in regulating signaling of neurodegeneration. We examined expression and interactions of the TNFR1 binding proteins, DENN/MADD, and TNFR-associated death domain (TRADD) protein in AD-affected tissues and cell cultures. We found reduced DENN/MADD and increased TRADD expression immunohistochemically in the hippocampus in areas of AD pathology compared to normal controls but little intraneuronal colocalization. In brain homogenates, DENN/MADD protein and mRNA expression was significantly reduced in AD compared to controls. Conversely, TRADD, TNFR1, and activated JNK were increased. Murine neuroblastoma and rat hippocampal cultures stressed with Abeta1-42 and the cortices of AD transgenic mice (Tg2576Swe) each showed decreased DENN/MADD expression and TRADD up-regulation in the mice, compared to controls. DENN/MADD antisense treatment of cultured rat hippocampal neurons reduced endogenous DENN/MADD and promoted neuronal cell death. DENN/MADD and TRADD competitively bound to TNFR1 when overexpressed in N(2)A cells, with DENN/MADD abrogating TNFR1 binding to TRADD. DENN/MADD may therefore be protective by inhibiting TRADD-induced apoptotic cell death. Reduction of DENN/MADD may affect long-term neuronal viability in AD by allowing TRADD mediation of TNFR1 signaling in response to oxidative or cytokine-promoted stresses.
- Terry A et al.
- Conservation and expression of an alternative 3' exon of Runx2 encoding a novel proline-rich C-terminal domain.
- Gene. 2004; 336: 115-25
- Display abstract
The Runx2 (Cbfa1, Aml3, PEBP2alphaA) gene plays an essential role in bone development and is one of a three-member family of closely related genes that encode the alpha-chain DNA binding components of the heterodimeric core binding factor complex. While all three mammalian Runx genes share a complex dual promoter structure (P1, P2) and display alternative splicing, a distinctive feature of Runx2 is the potential to encode larger isoforms in which the C-terminal domain encoded by the standard 3' terminal exon (exon 6) is replaced by an extended 200-201 amino acid C-terminal sequence including an extensive proline-rich domain and a C-terminal amphipathic helix. We report that the novel exon that gives rise to these variants (exon 6.1) is located over 100 kb downstream of exon 6 in the mouse, rat and human genomes. Exon 6.1 spans a CpG-rich island, and human/rodent conservation is evident through the coding sequence and the 3' untranslated region (UTR). Reverse transcriptase polymerase chain reaction (RT-PCR) and blot hybridisation analyses reveal that exon 6.1 is utilised at low levels in all mouse tissues and cell lines that express Runx2, regardless of which promoter is active, giving Runx2 the potential to encode more than 12 distinct isoforms. RT-PCR analysis of human RUNX2 exon 6.1 expression shows that utilisation of this exon is also conserved. In vitro transcription/translation of cDNAs encoding several exon 6.1 isoforms reveals that the novel Runx proteins are able to bind specifically to canonical Runx DNA target sequences. Antibodies raised to the unique C-terminal domain were shown to be reactive by immunoprecipitation and immunoblot assay, and were used in confocal immunofluorescence microscopy to reveal low level cytoplasmic staining in osteosarcoma and lymphoma cells that express high levels of Runx2 mRNA. However, reactive protein could not be detected in immunoblots of extracts from either cell type, suggesting that these proteins are unstable in lymphoid and osteosarcoma cells. In conclusion, the conservation and widespread utilisation of Runx2 exon 6.1 suggest that its encoded isoforms play an as yet undetermined role in mammalian development.
- Chen J et al.
- Molecular cloning and characterization of a novel human BTB domain-containing gene, BTBD10, which is down-regulated in glioma.
- Gene. 2004; 340: 61-9
- Display abstract
The broad-complex, tramtrack (ttk) and bric-a-brac/poxvirus and zinc finger proteins (BTB/POZ) domain is highly conserved in a large family of eukaryotic proteins and is crucial for the latter's diverse roles in mediating interactions among proteins that are involved in transcription regulation and chromatin structures. From a fetal brain cDNA library, we isolated a cDNA of 2489 base pairs (bp) encoding a novel human BTB domain-containing protein named BTBD10. The cDNA contained an open-reading frame (ORF) of 1428 bp encoding a putative 475-amino acid (aa) protein. The BTBD10 gene was located on human chromosome 11p15.2 and consisted of nine exons spanning about 75.2 kilobase pairs (kb) of the human genome. The cDNA microarray analysis showed that BTBD10 was down-regulated in all 18 glioma samples. The expression pattern of BTBD10 gene was examined by multiple tissue cDNA (MTC) panels (Clontech), which showed a ubiquitous expression pattern in the 16 tissues examined with high expression in adult brain, testis and small intestine and weak expression in the heart, lung, liver, kidney, pancreas, spleen, thymus, prostate, ovary and colon. The subcellular localization result revealed that BTBD10 was located specifically in the nucleus of HEK293 and COS7 cell lines, suggesting that it may function in transcriptional regulation. The different expression patterns of BTBD10 in different grades of glioma versus normal brain were also examined by RT-PCR and Northern blot. We also investigated the expression of BTBD10 in hepatocellular carcinoma, ovary cancer and lung cancer, and the results revealed no significant difference in these three tumors. All these data suggested that BTBD10 might play a role in glioma.
- Wang Y et al.
- TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1.
- Biochem Biophys Res Commun. 2004; 323: 9-16
- Display abstract
The tripartite motif (TRIM) proteins play important roles in a variety of cellular functions including cell proliferation, differentiation, development, oncogenesis, and apoptosis. In this study, we report the identification and characterization of the human tripartite motif-containing protein 45 (TRIM45), a novel member of the TRIM family, from a human embryonic heart cDNA library. TRIM45 has a predicted 580 amino acid open reading frame, encoding a putative 64-kDa protein. The N-terminal region harbors a RING finger, two B-boxes, and a predicted alpha-helical coiled-coil domain, which together form the RBCC/TRIM motif found in a large family of proteins, whereas the C-terminal region contains a filamin-type immunoglobulin (IG-FLMN) domain. Northern blot analysis indicates that TRIM45 is expressed in a variety of human adult and embryonic tissues. In the cell, TRIM45 protein is expressed both in cytoplasm and in cell nucleus. Overexpression of TRIM45 in COS-7 cells inhibits the transcriptional activities of ElK-1 and AP-1. These results suggest that TRIM45 may act as a new transcriptional repressor in mitogen-activated protein kinase signaling pathway.
- Wang L, Zhu K, Zheng Y
- Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains.
- Biochemistry. 2004; 43: 14584-93
- Display abstract
Activation of many Rho family GTPase pathways involves the signaling module consisting of the Dbl-like guanine nucleotide exchange factors (GEFs), the Rho GTPases, and the Rho GTPase specific effectors. The current biochemical model postulates that the GEF-stimulated GDP/GTP exchange of Rho GTPases leads to the active Rho-GTP species, and subsequently the active Rho GTPases interact with and activate the effectors. Here we report an unexpected finding that the Dbl oncoprotein, Cdc42 GTPase, and PAK1 can form a complex through their minimum functional motifs, i.e., the Dbl-homolgy (DH) and Pleckstrin-homology domains of Dbl, Cdc42, and the PBD domain of PAK1. The Dbl-Cdc42-PAK1 complex is sensitive to the nucleotide-binding state of Cdc42 since either dominant negative or constitutively active Cdc42 readily disrupts the ternary binding interaction. The complex formation depends on the interactions between the DH domain of Dbl and Cdc42 and between Cdc42 and the PBD domain of PAK1 and can be reconstituted in vitro by using the purified components. Furthermore, the Dbl-Cdc42-PAK1 ternary complex is active in generating signaling output through the activated PAK1 kinase in the complex. The GEF-Rho-effector ternary intermediate is also found in other Dbl-like GEF, Rho GTPase, and effector interactions. Finally, PAK1, through the PDB domain, is able to accelerate the GEF-induced GTP loading onto Cdc42. These results suggest that signal transduction through Cdc42 and possibly other Rho family GTPases could involve tightly coupled guanine nucleotide exchange and effector activation mechanisms and that Rho GTPase effector may have a feedback regulatory role in the Rho GTPase activation.
- Matsuzaka Y et al.
- Identification, expression analysis and polymorphism of a novel RLTPR gene encoding a RGD motif, tropomodulin domain and proline/leucine-rich regions.
- Gene. 2004; 343: 291-304
- Display abstract
We describe the isolation and characterization of a full-length cDNA encoded by a gene that was significantly down-regulated in the affected skin of patients with psoriasis vulgaris. The cDNA was isolated from a keratinocyte cDNA library and its sequence was found to correspond to a hypothetical locus recorded in GenBank with the accession number . The nucleotide sequence of the full-length cDNA was found to have an open reading frame of 1365 amino acids and to span approximately 12 kb of genomic DNA with 39 exons on chromosome 16q22. The deduced amino acid sequence contains four distinct structural regions, an RGD motif, a leucine-rich repeat (LRR) region, a tropomodulin domain, and a proline-rich domain. The gene was consequently designated as RLTPR (RGD, leucine-rich repeat, tropomodulin and proline-rich containing protein). The RLTPR hypothetical protein has a functional domain organization similar to Acan125, a myosin-binding protein expressed by Acanthamoeba castellanni. RT-PCR with RLTPR PCR primers amplified products from cDNAs prepared from all of the 30 different tissues that we examined including thymus, spleen, colon, skin, skin keratinocytes, skin fibroblasts and fetal skin. During the course of screening the human keratinocyte cDNA library, some alternative splicing was also detected in three regions of the RLTPR gene. In addition, sequence analysis of the RLTPR genes from eight psoriasis patients and eight healthy controls revealed a number of synonymous and nonsynonymous SNPs that may be useful markers for future disease association studies.
- Poulin F, Brueschke A, Sonenberg N
- Gene fusion and overlapping reading frames in the mammalian genes for 4E-BP3 and MASK.
- J Biol Chem. 2003; 278: 52290-7
- Display abstract
4E-BP3 is a member of the eukaryotic initiation factor (eIF) 4F-binding protein family of translational repressors. eIF4E-binding proteins (4E-BPs) inhibit translation initiation by sequestering eIF4E, the cap-binding protein, from eIF4G thus preventing ribosome recruitment to the mRNA. Previous analysis of 4E-BP3 expression uncovered an 8.5-kb mRNA variant of unknown origin. To study this splice variant, we determined the structure of the genomic locus encoding human 4E-BP3 (EIF4EBP3). EIF4EBP3 is located on human chromosome 5q31.3 and comprises three exons (A, B, and C) and two introns. Exon B contains the region of the open reading frame responsible for eIF4E binding. GenBank searches revealed multiple expressed sequence tags originating from the alternative splicing of exon B with unidentified upstream exons. Further studies revealed that the 8.5-kb transcript arises from the fusion of EIF4EBP3 with the mammalian homologue of Drosophila MASK (multiple ankyrin repeats, single KH domain), which is crucial for photoreceptor differentiation, cell survival, and proliferation. Surprisingly, the open reading frame of the MASK-BP3 transcript is different from that of 4E-BP3, which indicates that exon B is translated using an alternative reading frame. A gene fusion similar to that of MASK and EIF4EBP3 has been reported only once in mammals for the UEV1-Kua transcript. The use of an alternative reading frame is also very rare, having been described for two loci, INK4a/ARF and XLalphas/ALEX. The simultaneous exploitation of both mechanisms underscores the flexibility of mammalian genomes and has important implications for the functional analysis of 4E-BP3 and MASK. Interestingly, both eIF4E and MASK are downstream effectors of the Ras/MAPK pathway, which provides a rationale for the MASK-BP3 fusion in mammals.
- Yau DM, Yokoyama N, Goshima Y, Siddiqui ZK, Siddiqui SS, Kozasa T
- Identification and molecular characterization of the G alpha12-Rho guanine nucleotide exchange factor pathway in Caenorhabditis elegans.
- Proc Natl Acad Sci U S A. 2003; 100: 14748-53
- Display abstract
G alpha 12/13-mediated pathways have been shown to be involved in various fundamental cellular functions in mammalian cells such as axonal guidance, apoptosis, and chemotaxis. Here, we identified a homologue of Rho-guanine nucleotide exchange factor (GEF) in Caenorhabditis elegans (CeRhoGEF), which functions downstream of gpa-12, the C. elegans homologue of G alpha 12/13. CeRhoGEF contains a PSD-95/Dlg/ZO-1 domain and a regulator of G protein signaling (RGS) domain upstream of the Dbl homology-pleckstrin homology region similar to mammalian RhoGEFs with RGS domains, PSD-95/Dlg/ZO-1-RhoGEF and leukemia-associated RhoGEF. It has been shown in mammalian cells that these RhoGEFs interact with activated forms of G alpha 12 or G alpha 13 through their RGS domains. We demonstrated by coimmunoprecipitation that the RGS domain of CeRhoGEF interacts with GPA-12 in an AIF4- activation-dependent manner and confirmed that the Dbl homology-pleckstrin homology domain of CeRhoGEF was capable of Rho-dependent signaling. These results proved conservation of the G alpha 12-RhoGEF pathway in C. elegans. Expression of DsRed or GFP under the control of the promoter of CeRhoGEF or gpa-12 revealed an overlap of their expression patterns in ventral cord motor neurons and several neurons in the head. RNA-mediated gene interference for CeRhoGEF and gpa-12 resulted in similar phenotypes such as embryonic lethality and sensory and locomotive defects in adults. Thus, the G alpha 12/13-RhoGEF pathway is likely to be involved in embryonic development and neuronal function in C. elegans.
- Coppola T et al.
- The death domain of Rab3 guanine nucleotide exchange protein in GDP/GTP exchange activity in living cells.
- Biochem J. 2002; 362: 273-9
- Display abstract
Rab3 GTPases regulate exocytosis of neurons, endocrine and exocrine cells. In the present paper, we report a system to measure the guanine nucleotide status of Rab3 proteins in living cells. The assay is based on the ability of the Rab3 interacting molecule RIM to extract selectively the GTP-bound form of Rab3. Using this system, we found that approx. 20% of wild-type Rab3A, -B, -C or -D transfected in the insulin-secreting cell line HIT-T15 is in the GTP-bound conformation. The pool of activated Rab3 is decreased under conditions that stimulate exocytosis or by co-expression of the Rab3 GTPase-activating protein. In contrast, co-expression of Mss4 or Rab3-GEP (guanine nucleotide exchange protein) increases by approx. 3-fold the GTP-bound pool of Rab3 isoforms. Rab3-GEP is very similar to MADD, a death domain-containing protein that associates with the type 1 tumour necrosis factor receptor. We observed that the death domain of Rab3-GEP is involved in intramolecular interactions and that deletions or mutations that affect this domain of the protein impair the nucleotide exchange activity towards Rab3. We propose that the death domain of Rab3-GEP acts as a molecular switch and co-ordinates multiple functions of the protein by exchanging its binding partners.
- Lim KM, Chow VT
- Induction of marked apoptosis in mammalian cancer cell lines by antisense DNA treatment to abolish expression of DENN (differentially expressed in normal and neoplastic cells).
- Mol Carcinog. 2002; 35: 110-26
- Display abstract
We previously reported the isolation of the novel human DENN gene, which is differentially expressed in normal and neoplastic cells. DENN is identical to MADD (mitogen-activated protein kinase-activating death domain), which interacts with tumor necrosis factor receptor 1 through their death domains. DENN is also homologous to Rab3 GEP, a rat Rab3 GDP/GTP exchange protein. Real-time reverse transcription-polymerase chain reaction analysis showed that DENN expression in cancer cell lines was 26-50 times that in normal cells. The Jurkat human leukemia, PLC/PRF/5 human hepatoma, and NS-1 mouse myeloma cell lines as well as the MRC-5 human fetal lung and Vero monkey kidney cell lines were treated successfully with four separate DENN-targeted antisense oligodeoxynucleotides (ODNs) to abrogate DENN expression. Quantitative assessment of cell viability and apoptosis by flow cytometry via fluorescein diacetate and propidium iodide membrane-integrity tests, terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate-biotin nick end-labeling, and annexin V assays showed that antisense silencing of DENN resulted in markedly more pronounced cell death in cancer cells compared with nonmalignant cells. Antisense-treated cell lines exhibited extensive loss of DNA content, forming distinct sub-G(1) peaks, while cell proliferation diminished significantly. Ultrastructural features of programmed cell death in cells subjected to antisense ODNs were authenticated by electron microscopy. In contrast, transfection of cell lines with a plasmid construct to achieve DENN overexpression augmented cellular proliferation and could reverse the apoptotic effect of antisense and staurosporine treatment. Our findings suggest that DENN is intimately involved in anti-apoptotic and cell-survival processes.
- Al-Zoubi AM et al.
- Contrasting effects of IG20 and its splice isoforms, MADD and DENN-SV, on tumor necrosis factor alpha-induced apoptosis and activation of caspase-8 and -3.
- J Biol Chem. 2001; 276: 47202-11
- Display abstract
We identified a novel cDNA (IG20) that is homologous to cDNAs encoding a protein differentially expressed in normal and neoplastic cells (DENN-SV) and human MADD (MAPK-activating death domain-containing protein). Furthermore, we show that the above variants most likely result from alternative splicing of a single gene. Functional analyses of these variants in permanently transfected HeLa cells revealed that IG20 and DENN-SV render them more susceptible or resistant to tumor necrosis factor alpha (TNF-alpha)-induced apoptosis, respectively. All variants tested could interact with TNF receptor 1 and activate ERK and nuclear factor kappaB. However, relative to control cells, only cells expressing IG20 showed enhanced TNF-alpha-induced activation of caspase-8 and -3, whereas cells expressing DENN-SV showed either reduced or no caspase activation. Transfection of these cells with a cDNA encoding CrmA maximally inhibited apoptosis in HeLa-IG20 cells. Our results show that IG20 can promote TNF-alpha-induced apoptosis and activation of caspase-8 and -3 and suggest that it may play a novel role in the regulation of the pleiotropic effects of TNF-alpha through alternative splicing.
- Uhlmann J, Wiemann S, Ponstingl H
- DelGEF, an RCC1-related protein encoded by a gene on chromosome 11p14 critical for two forms of hereditary deafness.
- FEBS Lett. 1999; 460: 153-60
- Display abstract
We have cloned a human cDNA, DELGEF (deafness locus associated putative guanine nucleotide exchange factor), derived from a 225 kb genomic sequence of chromosome 11p14, critical for the Usher 1C syndrome and for DFNB18, a locus for non-syndromic sensorineural deafness. The amino acid sequence of the protein hDelGEF1 is homologous to the nucleotide exchange factor RCCI for the small GTPase Ran. hDelGEF2 is derived from the same DELGEF gene by alternative splicing. In addition, we have identified a murine homologue, mDelGEF. The ubiquitously expressed soluble protein hDelGEF1 is found both in the cyytoplasm and in the nucleus. Overexpressed hDelGEF2 colocalizes with mitochondria.
- Brown TL, Howe PH
- MADD is highly homologous to a Rab3 guanine-nucleotide exchange protein (Rab3-GEP)
- Curr Biol. 1998; 8: 191-191