Secondary literature sources for ELM2
The following references were automatically generated.
- Leight ER et al.
- Conversion of the LIN-1 ETS protein of Caenorhabditis elegans from a SUMOylated transcriptional repressor to a phosphorylated transcriptional activator.
- Genetics. 2015; 199: 761-75
- Display abstract
The LIN-1 ETS transcription factor plays a pivotal role in controlling cell fate decisions during development of the Caenorhabditis elegans vulva. Prior to activation of the RTK/Ras/ERK-signaling pathway, LIN-1 functions as a SUMOylated transcriptional repressor that inhibits vulval cell fate. Here we demonstrate using the yeast two-hybrid system that SUMOylation of LIN-1 mediates interactions with a protein predicted to be involved in transcriptional repression: the RAD-26 Mi-2beta/CHD4 component of the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies indicated that rad-26 functions to inhibit vulval cell fates in worms. Using the yeast two-hybrid system, we showed that the EGL-27/MTA1 component of the NuRD complex binds the carboxy-terminus of LIN-1 independently of LIN-1 SUMOylation. EGL-27 also binds UBC-9, an enzyme involved in SUMOylation, and MEP-1, a zinc-finger protein previously shown to bind LIN-1. Genetic studies indicate that egl-27 inhibits vulval cell fates in worms. These results suggest that LIN-1 recruits multiple proteins that repress transcription via both the SUMOylated amino-terminus and the unSUMOylated carboxy-terminus. Assays in cultured cells showed that the carboxy-terminus of LIN-1 was converted to a potent transcriptional activator in response to active ERK. We propose a model in which LIN-1 recruits multiple transcriptional repressors to inhibit the 1 degrees vulval cell fate, and phosphorylation by ERK converts LIN-1 to a transcriptional activator that promotes the 1 degrees vulval cell fate.
- Padmanabha D, Padilla PA, You YJ, Baker KD,
- A HIF-independent mediator of transcriptional responses to oxygen deprivation in Caenorhabditis elegans.
- Genetics. 2015; 199: 739-48
- Display abstract
The adaptive response to hypoxia is accompanied by widespread transcriptional changes that allow for prolonged survival in low oxygen. Many of these changes are directly regulated by the conserved hypoxia-inducible factor-1 (HIF-1) complex; however, even in its absence, many oxygen-sensitive transcripts in Caenorhabditis elegans are appropriately regulated in hypoxia. To identify mediators of these non-HIF-dependent responses, we established a hif-1 mutant reporter line that expresses GFP in hypoxia or when worms are treated with the hypoxia mimetic cobalt chloride (CoCl2). The reporter is selective and HIF independent, in that it remains insensitive to a number of cellular stresses, but is unaffected by mutation of the prolyl hydroxylase egl-9, suggesting that the regulators of this response pathway are different from those controlling the HIF pathway. We used the HIF-independent reporter to screen a transcription factor RNA interference (RNAi) library and identified genes that are required for hypoxia-sensitive and CoCl2-induced GFP expression. We identified the zinc finger protein BLMP-1 as a mediator of the HIF-independent response. We show that mutation of blmp-1 renders animals sensitive to hypoxic exposure and that blmp-1 is required for appropriate hypoxic-induced expression of HIF-independent transcripts. Further, we demonstrate that BLMP-1 is necessary for an increase of hypoxia-dependent histone acetylation within the promoter of a non-HIF-dependent hypoxia response gene.
- Roy SH et al.
- A complex regulatory network coordinating cell cycles during C. elegans development is revealed by a genome-wide RNAi screen.
- G3 (Bethesda). 2014; 4: 795-804
- Display abstract
The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development.
- Zhang Y, Moriguchi H
- Chromatin remodeling system, cancer stem-like attractors, and cellular reprogramming.
- Cell Mol Life Sci. 2011; 68: 3557-71
- Display abstract
The cancer cell attractors theory provides a next-generation understanding of carcinogenesis and natural explanation of punctuated clonal expansions of tumor progression. The impressive notion of atavism of cancer is now updated but more evidence is awaited. Besides, the mechanisms that the ectopic expression of some germline genes result in somatic tumors such as melanoma and brain tumors are emerging but are not well understood. Cancer could be triggered by cells undergoing abnormal cell attractor transitions, and may be reversible with "cyto-education". From mammals to model organisms like Caenorhabditis elegans and Drosophila melanogaster, the versatile Mi-2beta/nucleosome remodeling and histone deacetylation complexes along with their functionally related chromatin remodeling complexes (CRCs), i.e., the dREAM/Myb-MuvB complex and Polycomb group complex are likely master regulators of cell attractors. The trajectory that benign cells switch to cancerous could be the reverse of navigation of embryonic cells converging from a series of intermediate transcriptional states to a final adult state, which is supported by gene expression dynamics inspector assays and some cross-species genetic evidence. The involvement of CRCs in locking cancer attractors may help find the recipes of perturbing genes to achieve successful reprogramming such that the reprogrammed cancer cell function in the same way as the normal cells.
- Kirienko NV, Mani K, Fay DS
- Cancer models in Caenorhabditis elegans.
- Dev Dyn. 2010; 239: 1413-48
- Display abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
- McDonel P, Costello I, Hendrich B
- Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development.
- Int J Biochem Cell Biol. 2009; 41: 108-16
- Display abstract
Gene inactivation studies of mammalian histone and DNA-modifying proteins have demonstrated a role for many such proteins in embryonic development. Post-implantation embryonic lethality implies a role for epigenetic factors in differentiation and in development of specific lineages or tissues. However a handful of chromatin-modifying enzymes have been found to be required in pre- or peri-implantation embryos. This is significant as implantation is the time when inner cell mass cells of the blastocyst exit pluripotency and begin to commit to form the various lineages that will eventually form the adult animal. These observations indicate a critical role for chromatin-modifying proteins in the earliest lineage decisions of mammalian development, and/or in the formation of the first embryonic cell types. Recent work has shown that the two major class I histone deacetylase-containing co-repressor complexes, the NuRD and Sin3 complexes, are both required at peri-implantation stages of mouse development, demonstrating the importance of histone deacetylation in cell fate decisions. Over the past 10 years both genetic and biochemical studies have revealed surprisingly divergent roles for these two co-repressors in mammalian cells. In this review we will summarise the evidence that the two major class I histone deacetylase complexes in mammalian cells, the NuRD and Sin3 complexes, play important roles in distinct aspects of embryonic development.
- Wang L, Tsai CC
- Atrophin proteins: an overview of a new class of nuclear receptor corepressors.
- Nucl Recept Signal. 2008; 6: 9-9
- Display abstract
The normal development and physiological functions of multicellular organisms are regulated by complex gene transcriptional networks that include myriad transcription factors, their associating coregulators, and multiple chromatin-modifying factors. Aberrant gene transcriptional regulation resulting from mutations among these elements often leads to developmental defects and diseases. This review article concentrates on the Atrophin family proteins, including vertebrate Atrophin-1 (ATN1), vertebrate arginine-glutamic acid dipeptide repeats protein (RERE), and Drosophila Atrophin (Atro), which we recently identified as nuclear receptor corepressors. Disruption of Atrophin-mediated pathways causes multiple developmental defects in mouse, zebrafish, and Drosophila, while an aberrant form of ATN1 and altered expression levels of RERE are associated with neurodegenerative disease and cancer in humans, respectively. We here provide an overview of current knowledge about these Atrophin proteins. We hope that this information on Atrophin proteins may help stimulate fresh ideas about how this newly identified class of nuclear receptor corepressors aids specific nuclear receptors and other transcriptional factors in regulating gene transcription, manifesting physiological effects, and causing diseases.
- Blackmore TM, Mercer CF, Paterno GD, Gillespie LL
- The transcriptional cofactor MIER1-beta negatively regulates histone acetyltransferase activity of the CREB-binding protein.
- BMC Res Notes. 2008; 1: 68-68
- Display abstract
BACKGROUND: Mier1 encodes a novel transcriptional regulator and was originally isolated as a fibroblast growth factor early response gene. Two major protein isoforms have been identified, MIER1alpha and beta, which differ in their C-terminal sequence. Previously, we demonstrated that both isoforms recruit histone deacetylase 1 (HDAC1) to repress transcription. To further explore the role of MIER1 in chromatin remodeling, we investigated the functional interaction of MIER1 with the histone acetyltransferase (HAT), Creb-binding protein (CBP). FINDINGS: Using GST pull-down assays, we demonstrate that MIER1 interacts with CBP and that this interaction involves the N-terminal half (amino acids 1-283) of MIER1, which includes the acidic activation and ELM2 domains and the C-terminal half (amino acids 1094-2441) of CBP, which includes the bromo-, HAT, C/H3 and glutamine-rich domains. Functional analysis, using HEK293 cells, shows that the CBP bound to MIER1 in vivo has no detectable HAT activity. Histone 4 peptide binding assays demonstrate that this inhibition of HAT activity is not the result of interference with histone binding. CONCLUSION: Our data indicate that an additional mechanism by which MIER1 could repress transcription involves the inhibition of histone acetyltransferase activity.
- Sun H, Nelms BL, Sleiman SF, Chamberlin HM, Hanna-Rose W
- Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.
- Genetics. 2007; 177: 1221-6
- Display abstract
The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.
- Deng H et al.
- Transcription factor NFY globally represses the expression of the C. elegans Hox gene Abdominal-B homolog egl-5.
- Dev Biol. 2007; 308: 583-92
- Display abstract
The C. elegans Hox gene egl-5 (ortholog of Drosophila Abdominal-B) is expressed in multiple tissues in the tail region and is involved in tail patterning. In this study, we identify and clone the corresponding C. elegans orthologs of the components of the heterotrimeric transcription factor NFY, nfya-1, nfyb-1 and nfyc-1 and demonstrate that mutations in these components result in the ectopic expression of egl-5 outside of its normal expression domains. The NFYA-1 protein forms a complex with NFYB-1 and NFYC-1, specifically recognizing the CCAAT box. Mutating a CCAAT box in the proximal promoter of egl-5 also leads to the derepression of egl-5, suggesting a direct role for the NFY complex in the regulation of egl-5. In addition, we show that the NFY complex interacts with the MES-2/MES-6 PcG complex in Hox gene regulation. Thus, our studies unravel a physiological function of NFY in establishing the spatially restricted expression pattern of egl-5.
- Haecker A et al.
- Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos.
- PLoS Biol. 2007; 5: 145-145
- Display abstract
Complex gene expression patterns in animal development are generated by the interplay of transcriptional activators and repressors at cis-regulatory DNA modules (CRMs). How repressors work is not well understood, but often involves interactions with co-repressors. We isolated mutations in the brakeless gene in a screen for maternal factors affecting segmentation of the Drosophila embryo. Brakeless, also known as Scribbler, or Master of thickveins, is a nuclear protein of unknown function. In brakeless embryos, we noted an expanded expression pattern of the Kruppel (Kr) and knirps (kni) genes. We found that Tailless-mediated repression of kni expression is impaired in brakeless mutants. Tailless and Brakeless bind each other in vitro and interact genetically. Brakeless is recruited to the Kr and kni CRMs, and represses transcription when tethered to DNA. This suggests that Brakeless is a novel co-repressor. Orphan nuclear receptors of the Tailless type also interact with Atrophin co-repressors. We show that both Drosophila and human Brakeless and Atrophin interact in vitro, and propose that they act together as a co-repressor complex in many developmental contexts. We discuss the possibility that human Brakeless homologs may influence the toxicity of polyglutamine-expanded Atrophin-1, which causes the human neurodegenerative disease dentatorubral-pallidoluysian atrophy (DRPLA).
- Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R
- Functional interplay between histone demethylase and deacetylase enzymes.
- Mol Cell Biol. 2006; 26: 6395-402
- Display abstract
Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents for the treatment of solid and hematological malignancies. The precise mechanism by which HDAC inhibitors mediate their effects on tumor cell growth, differentiation, and/or apoptosis is the subject of intense research. Previously we described a family of multiprotein complexes that contain histone deacetylase 1/2 (HDAC1/2) and the histone demethylase BHC110 (LSD1). Here we show that HDAC inhibitors diminish histone H3 lysine 4 (H3K4) demethylation by BHC110 in vitro. In vivo analysis revealed an increased H3K4 methylation concomitant with inhibition of nucleosomal deacetylation by HDAC inhibitors. Reconstitution of recombinant complexes revealed a functional connection between HDAC1 and BHC110 only when nucleosomal substrates were used. Importantly, while the enzymatic activity of BHC110 is required to achieve optimal deacetylation in vitro, in vivo analysis following ectopic expression of an enzymatically dead mutant of BHC110 (K661A) confirmed the functional cross talk between the demethylase and deacetylase enzymes. Our studies not only reveal an intimate link between the histone demethylase and deacetylase enzymes but also identify histone demethylation as a secondary target of HDAC inhibitors.
- Grote P, Conradt B
- The PLZF-like protein TRA-4 cooperates with the Gli-like transcription factor TRA-1 to promote female development in C. elegans.
- Dev Cell. 2006; 11: 561-73
- Display abstract
The Gli-like transcription factor TRA-1 of C. elegans promotes female development by repressing the transcription of male-specific genes. We have found that tra-1 interacts with tra-4, a previously uncharacterized gene that encodes a protein similar to the human proto-oncoprotein and transcriptional repressor PLZF. In this context, the TRA-4 protein functions with NASP-1, a C. elegans homolog of the mammalian histone chaperone NASP, and the histone deacetylase HDA-1. We also found that tra-4 is a member of the synMuv B group of genes, many of which encode homologs of components of the Drosophila Myb-Muv B transcriptional repressor complex, and that several synMuv B genes also promote female development. Based on these results, we propose that male-specific genes are repressed in C. elegans hermaphrodites by the combined action of TRA-1/Gli, a complex composed of TRA-4/PLZF-like, NASP, and HDA-1/HDAC, and synMuv B proteins. Similar interactions may function in sex determination and developmental regulation in other species.
- Cardoso C et al.
- XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans.
- Dev Biol. 2005; 278: 49-59
- Display abstract
Mutations in the XNP/ATR-X gene cause several X-linked mental retardation syndromes in humans. The XNP/ATR-X gene encodes a DNA-helicase belonging to the SNF2 family. It has been proposed that XNP/ATR-X might be involved in chromatin remodelling. The lack of a mouse model for the ATR-X syndrome has, however, hampered functional studies of XNP/ATR-X. C. elegans possesses one homolog of the XNP/ATR-X gene, named xnp-1. By analysing a deletion mutant, we show that xnp-1 is required for the development of the embryo and the somatic gonad. Moreover, we show that abrogation of xnp-1 function in combination with inactivation of genes of the NuRD complex, as well as lin-35/Rb and hpl-2/HP1 leads to a stereotyped block of larval development with a cessation of growth but not of cell division. We also demonstrate a specific function for xnp-1 together with lin-35 or hpl-2 in the control of transgene expression, a process known to be dependent on chromatin remodelling. This study thus demonstrates that in vivo XNP-1 acts in association with RB, HP1 and the NuRD complex during development.
- Zhang G, Sleiman SF, Tseng RJ, Rajakumar V, Wang X, Chamberlin HM
- Alteration of the DNA binding domain disrupts distinct functions of the C. elegans Pax protein EGL-38.
- Mech Dev. 2005; 122: 887-99
- Display abstract
The paired-domain-containing Pax transcription factors play an important role in the development of a range of organ, tissue and cell types. Although DNA binding elements and target genes for Pax proteins have been identified, how these proteins identify appropriate DNA elements and regulate different genes in different cellular contexts is not well understood. To investigate the relationship between Pax proteins and their targets, we have studied the in vivo and in vitro properties associated with wild-type and different mutant variants of the Caenorhabditis elegans Pax protein EGL-38. Here, we characterize the properties of four mutations that result in an amino acid substitution in the DNA binding domain of EGL-38. We find that animals bearing the different mutant alleles exhibit tissue-preferential defects in egl-38 function. The mutant proteins are also altered in their activity in an ectopic expression assay and in their in vitro DNA binding properties. Using in vitro selection, we have identified binding sites for EGL-38. However, we show that selected sites function poorly in vivo as EGL-38 response elements, indicating that sequence features in addition to DNA binding determine the efficacy of Pax response elements. The distinction between DNA binding and activity is consistent with the model that other factors commonly play a role in mediating Pax protein target site selection and function in vivo.
- Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, Cagan RL
- A Drosophila model of multiple endocrine neoplasia type 2.
- Genetics. 2005; 171: 1057-81
- Display abstract
Dominant mutations in the Ret receptor tyrosine kinase lead to the familial cancer syndrome multiple endocrine neoplasia type 2 (MEN2). Mammalian tissue culture studies suggest that RetMEN2 mutations significantly alter Ret-signaling properties, but the precise mechanisms by which RetMEN2 promotes tumorigenesis remain poorly understood. To determine the signal transduction pathways required for RetMEN2 activity, we analyzed analogous mutations in the Drosophila Ret ortholog dRet. Overexpressed dRetMEN2 isoforms targeted to the developing retina led to aberrant cell proliferation, inappropriate cell fate specification, and excessive Ras pathway activation. Genetic analysis indicated that dRetMEN2 acts through the Ras-ERK, Src, and Jun kinase pathways. A genetic screen for mutations that dominantly suppress or enhance dRetMEN2 phenotypes identified new genes that are required for the phenotypic outcomes of dRetMEN2 activity. Finally, we identified human orthologs for many of these genes and examined their status in human tumors. Two of these loci showed loss of heterozygosity (LOH) within both sporadic and MEN2-associated pheochromocytomas, suggesting that they may contribute to Ret-dependent oncogenesis.
- Hong HK, Chakravarti A, Takahashi JS
- The gene for soluble N-ethylmaleimide sensitive factor attachment protein alpha is mutated in hydrocephaly with hop gait (hyh) mice.
- Proc Natl Acad Sci U S A. 2004; 101: 1748-53
- Display abstract
The spontaneous autosomal recessive mouse mutant for hydrocephaly with hop gait (hyh) exhibits dramatic cystic dilation of the ventricles at birth and invariably develops hopping gait. We show that the gene for soluble N-ethylmaleimide sensitive factor attachment protein alpha, also known as alpha-SNAP, is mutated in hyh mice. alpha-SNAP plays a key role in a wide variety of membrane fusion events in eukaryotic cells, including the regulated exocytosis of neurotransmitters. Homozygous mutant mice harbor a missense mutation M105I in a conserved residue in one of the alpha-helical domains. We demonstrate that the hyh mutant is not a null allele and is expressed; however, the mutant protein is 40% less abundant in hyh mice. The hyh mutant provides a valuable in vivo model to study vesicle/membrane trafficking and provides insight into the potential roles of alpha-SNAP in embryogenesis and brain development.
- Couthier A, Smith J, McGarr P, Craig B, Gilleard JS
- Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence.
- Mol Biochem Parasitol. 2004; 133: 241-53
- Display abstract
Comparative analysis between Caenorhabditis elegans and other nematode species offers a powerful approach to study gene function. C. elegans also has great potential as a surrogate expression system to study the function of genes from parasitic nematode species where transgenic methodologies are unavailable. However there is little information on the extent to which the biology of C. elegans is conserved with other nematode species and very few parasitic nematode genes have yet been functionally expressed in C. elegans. We have identified and characterised a homologue of the C. elegans GATA transcription factor elt-2, a central regulator of endoderm development, from the parasitic nematode Haemonchus contortus. The H. contortus ELT-2 polypeptide is present in endoderm nuclei throughout embryonic and post-embryonic development, except for in the infective L3 stage, and our experiments reveal that the development of the H. contortus endodermal lineage is strikingly similar to that of C. elegans. Sequence conservation between the H. contortus and C. elegans ELT-2 polypeptides broadly reflects function since the major region of sequence identity corresponds to the DNA binding domain. However, the overall level of sequence identity is remarkably low with the only other major region of identity corresponding to an unusual zinc finger domain. In spite of this, ectopic expression of the H. contortus elt-2 gene in transgenic C. elegans is sufficient to activate a programme of endodermal differentiation demonstrating that function is highly conserved. This approach of ectopic expression using an inducible promoter provides an effective way in which to use C. elegans for the in vivo functional analysis of parasitic nematode genes.
- Feng Q, Zhang Y
- The NuRD complex: linking histone modification to nucleosome remodeling.
- Curr Top Microbiol Immunol. 2003; 274: 269-90
- Display abstract
ATP-dependent nucleosome remodeling and core histone tail modifications play important roles in chromatin function. Purification and characterization of the NuRD/Mi-2 complex, which possesses both nucleosome remodeling and histone deacetylase activities, suggests that ATP-dependent nucleosome remodeling and histone tail modification can be coupled. Recent studies indicate that NuRD is an integral part of the MeCP1 complex, suggesting that nucleosome remodeling and histone deacetylation play important roles in methylated DNA silencing. Studies in Caenorhabditis elegans have revealed important functions of the NuRD complex in embryonic patterning and Ras signaling. Accumulating evidence indicates that NuRD may regulate transcription of specific genes by interacting with specific transcriptional factors. In addition, it may also participate in genome-wide transcriptional regulation through an association with histone tails.
- Cui M, Han M
- Cis regulatory requirements for vulval cell-specific expression of the Caenorhabditis elegans fibroblast growth factor gene egl-17.
- Dev Biol. 2003; 257: 104-16
- Display abstract
The Caenorhabditis elegans EGL-17/FGF protein is involved in the gonadal signaling that guides the migrations of sex myoblasts (SMs). egl-17::GFP reporter constructs are expressed dynamically in vulval cell lineages. Expression in the primary vulval cells is correlated with the precise positioning of SMs. We have investigated the cis-regulatory requirements for cell- and stage-specific expression of egl-17. Three enhancer elements that specify the expression of the egl-17::GFP reporter gene in primary or secondary vulval cells at certain stages were identified. Sequence analysis has suggested a number of potential transcription factor binding sites within the enhancer elements. egl-17 is most likely a direct target of the LIN-39 Hox protein because mutations either in the lin-39/hox gene or at the consensus HOX/PBC binding site within the distal enhancer of the egl-17 gene eliminated distal enhancer-activated egl-17 expression. Since expression of egl-17::GFP driven by the distal enhancer can no longer be turned off at late stages in lin-1 and lin-31 mutants, egl-17 may also be regulated by Ras signaling through repression of LIN-1 and LIN-31 activities. Interspecies transformation experiments showed that egl-17 cis-regulatory elements are structurally and functionally conserved between C. elegans and C. briggsae.
- Toker AS, Teng Y, Ferreira HB, Emmons SW, Chalfie M
- The Caenorhabditis elegans spalt-like gene sem-4 restricts touch cell fate by repressing the selector Hox gene egl-5 and the effector gene mec-3.
- Development. 2003; 130: 3831-40
- Display abstract
Members of the spalt (sal) gene family encode zinc-finger proteins that are putative tumor suppressors and regulate anteroposterior (AP) patterning, cellular identity, and, possibly, cell cycle progression. The mechanism through which sal genes carry out these functions is unclear. The Caenorhabditis elegans sal gene sem-4 controls the fate of several different cell types, including neurons, muscle and hypodermis. Mutation of sem-4 transforms particular tail neurons into touch-neuron-like cells. In wild-type C. elegans, six touch receptor neurons mediate the response of the worm to gentle touch. All six touch neurons normally express the LIM homeobox gene mec-3. A subset, the two PLM cells, also express the Hox gene egl-5, an Abdominal-B homolog, which we find is required for correct mec-3 expression in these cells. The abnormal touch-neuron-like-cells in sem-4 animals express mec-3; we show that a subset also express egl-5. We report: (1) that ectopic expression of sem-4 in normal touch cells represses mec-3 expression and reduces touch cell function; (2) that egl-5 expression is required for both the fate of normal PLM touch neurons in wild-type animals and the fate of a subset of abnormal touch neurons in sem-4 animals, and (3) that SEM-4 specifically binds a shared motif in the mec-3 and egl-5 promoters that mediates repression of these genes in cells in the tail. We conclude that sem-4 represses egl-5 and mec-3 through direct interaction with regulatory sequences in the promoters of these genes, that sem-4 indirectly modulates mec-3 expression through its repression of egl-5 and that this negative regulation is required for proper determination of neuronal fates. We suggest that the mechanism and targets of regulation by sem-4 are conserved throughout the sal gene family: other sal genes might regulate patterning and cellular identity through direct repression of Hox selector genes and effector genes.
- Ross JM, Zarkower D
- Polycomb group regulation of Hox gene expression in C. elegans.
- Dev Cell. 2003; 4: 891-901
- Display abstract
Polycomb group (PcG) chromatin proteins regulate homeotic genes in both animals and plants. In Drosophila and vertebrates, PcG proteins form complexes and maintain early patterns of Hox gene repression, ensuring fidelity of developmental patterning. PcG proteins in C. elegans form a complex and mediate transcriptional silencing in the germline, but no role for the C. elegans PcG homologs in somatic Hox gene regulation has been demonstrated. Surprisingly, we find that the PcG homologs MES-2 [E(Z)] and MES-6 (ESC), along with MES-3, a protein without known homologs, do repress Hox expression in C. elegans. mes mutations cause anteroposterior transformations and disrupt Hox-dependent neuroblast migration. Thus, as in Drosophila, vertebrates, and plants, C. elegans PcG proteins regulate key developmental patterning genes to establish positional identity.
- Lints R, Emmons SW
- Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family.
- Genes Dev. 2002; 16: 2390-402
- Display abstract
Mutations in Caenorhabditis elegans gene mab-23 cause abnormal male tail morphology and abolish male fecundity but have no obvious effect in the hermaphrodite. Here we show that mab-23 encodes a DM (Doublesex/MAB-3) domain transcription factor necessary for specific aspects of differentiation in sex-specific tissues of the male. mab-23 is required for the patterning of posterior sensory neurons in the male nervous system, sex muscle differentiation, and morphogenesis of the posterior hypodermis, spicules, and proctodeum. Failure of mab-23 mutant males to sire progeny is due primarily to defective sex muscle-mediated turning during copulatory behavior and likely compounded by impairment of sperm passage through the proctodeum. In the male nervous system, mab-23 refines ray neuron subtype distribution by restricting expression of dopaminergic neurotransmitter identity through interactions with the Hox gene egl-5 and a TGF-beta-related signaling pathway. mab-23 has distinct roles and functions independent of mab-3, indicating different aspects of C. elegans male sexual differentiation are coordinated among DM domain family members. Our results support the hypothesis that DM domain genes derive from an ancestral male sexual regulator and suggest how regulation of sexual development has evolved in distinct ways in different phyla.
- Taylor MS
- Characterization and comparative analysis of the EGLN gene family.
- Gene. 2001; 275: 125-32
- Display abstract
Rat Sm-20 is a homologue of the Caenorhabditis elegans gene egl-9 and has been implicated in the regulation of growth, differentiation and apoptosis in muscle and nerve cells. Null mutants in egl-9 result in a complete tolerance to an otherwise lethal toxin produced by Pseudomonas aeruginosa. This study describes the conserved Egl-Nine (EGLN) gene family of which rat SM-20 and C. elegans Egl-9 are members and characterizes the mouse and human homologues. Each of the human genes (EGLN1, EGLN2 and EGLN3) are of a conserved genomic structure consisting of five coding exons. Phylogenetic analysis and domain organization show that EGLN1 represents the ancestral form of the gene family and that EGLN3 is the human orthologue of rat Sm-20. The previously observed mitochondrial targeting of rat SM-20 is unlikely to be a general feature of the protein family and may be a feature specific to rats. An EGLN gene is unexpectedly found in the genome of P. aeruginosa, a bacterium known to produce a toxin that acts through the Egl-9 protein. The pathogenic bacterium Vibrio cholerae is also shown to have an EGLN gene suggesting that it is an important pathogenicity factor. These results provide new insights into host-pathogen interactions and a basis for further functional characterization of the gene family and resolve discrepancies in annotation between gene family members.
- Koh K, Rothman JH
- ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in C. elegans.
- Development. 2001; 128: 2867-80
- Display abstract
The C. elegans epidermis is a simple epithelium comprised of three major cell types, the seam, syncytial and P cells. While specification of all major epidermal cells is known to require the ELT-1 GATA transcription factor, little is known about how the individual epidermal cell types are specified. We report that elt-5 and -6, adjacent genes encoding GATA factors, are essential for the development of the lateral epidermal cells, the seam cells. Inhibition of elt-5 and -6 function by RNA-mediated interference results in penetrant late embryonic and early larval lethality. Seam cells in affected animals do not differentiate properly: the alae, seam-specific cuticular structures, are generally absent and expression of several seam-specific markers is blocked. In addition, elt-3, which encodes another GATA factor normally expressed in non-seam epidermis, is often ectopically expressed in the seam cells of affected animals, demonstrating that ELT-5 and -6 repress elt-3 expression in wild-type seam cells. Seam cells in affected animals often undergo inappropriate fusion with the epidermal syncytia. Interference of elt-5 and -6 function during larval development can cause fusion of all seam cells with the surrounding syncytia and pronounced defects in molting. elt-5 and -6 are both expressed in seam cells and many other cells, and are apparently functionally interchangeable. Their expression is controlled by separable tissue-specific regulatory elements and the apportionment of monocistronic versus dicistronic transcription of both genes appears to be subject to cell-type-specific regulation. Collectively, these findings indicate that elt-5 and -6 function continuously throughout C. elegans development to regulate seam cell differentiation and cell fusion.
- Newman AP, Inoue T, Wang M, Sternberg PW
- The Caenorhabditis elegans heterochronic gene lin-29 coordinates the vulval-uterine-epidermal connections.
- Curr Biol. 2000; 10: 1479-88
- Display abstract
BACKGROUND: The development of a connection between the uterus and the vulva in the nematode Caenorhabditis elegans requires specification of a uterine cell called the utse, and its attachment to the vulva and the epidermal seam cells. The uterine pi cells generate the utse and uv1 cells, which also connect the uterus to the vulva. The uterine anchor cell (AC) induces the vulva through LIN-3/epidermal growth factor (EGF) signaling, and the pi cells through LIN-12/Notch signaling. Here, we report that a gene required for seam cell maturation is also required for specification of the utse and for vulval differentiation, and thus helps to coordinate development of the vulval-uterine-seam cell connection. RESULTS: We cloned the egl-29 gene, which is necessary for induction of uterine pi cells, and found it to be allelic to lin-29, which encodes a zinc finger transcription factor that is necessary for the terminal differentiation of epidermal seam cells. In the uterus, lin-29 functioned upstream of lin-12 in the induction of pi cells and was necessary to maintain expression in the AC of lag-2, which encodes a ligand for LIN-12. CONCLUSIONS: The lin-29 gene controls gene expression in the epidermal seam cells, uterus and vulva, and may help to coordinate the terminal development of these three tissues by regulating the timing of late gene expression during organogenesis.
- Gissendanner CR, Sluder AE
- nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development.
- Dev Biol. 2000; 221: 259-72
- Display abstract
We have analyzed the expression and function of the Caenorhabditis elegans gene nhr-25, a member of the widely conserved FTZ-F1 family of nuclear receptors. The gene encodes two protein isoforms, only one of which has a DNA binding domain. nhr-25 is transcribed during embryonic and larval development. A nhr-25::GFP fusion gene is expressed in the epidermis, the developing somatic gonad, and a subset of other epithelial cells. RNA-mediated interference indicates a requirement for nhr-25 function during development: disruption of nhr-25 function leads to embryonic arrest due to failure of the epidermally mediated process of embryo elongation. Animals that survive to hatching arrest as misshapen larvae that occasionally exhibit defects in shedding molted cuticle. In addition, somatic gonad development is defective in these larvae. These results further establish the importance of FTZ-F1 nuclear receptors in molting and developmental control across evolutionarily distant phyla.
- Guipponi M et al.
- C21orf5, a novel human chromosome 21 gene, has a Caenorhabditis elegans ortholog (pad-1) required for embryonic patterning.
- Genomics. 2000; 68: 30-40
- Display abstract
To contribute to the development of the transcription map of human chromosome 21 (HC21), we isolated a new transcript, C21orf5 (chromosome 21 open reading frame 5), encoding a predicted 2298-amino-acid protein. Analysis of the genomic DNA sequence revealed that C21orf5 consists of 37 exons that extend over 130 kb and maps between the CBR3 (carbonyl reductase 3) and the KIAA0136 genes. Northern blot analyses showed a ubiquitously expressed RNA species of 8.5 kb. RNA in situ hybridization on brain sections of normal human embryos revealed a strong labeling in restricted areas of the cerebral cortex. In silico analysis of the deduced C21orf5 protein revealed several highly probable transmembrane segments but no known protein domains or homology with known proteins. However, there were significant homologies to several hypothetical Caenorhabditis elegans proteins and Drosophila melanogaster genomic sequences. To investigate the function of C21orf5, we isolated the cDNA of the C. elegans ortholog and performed double-stranded RNA-mediated genetic interference experiments. The major phenotype observed in the progeny of injected animals was embryonic lethality. Most of the tissues of the embryo failed to undergo proper patterning during gastrulation, and morphogenesis did not occur; thus we termed the ortholog pad-1, for patterning defective 1. These results indicated that pad-1 is essential for the development and the survival of C. elegans. This study provides the first example of the use of C. elegans as a model to study the function of genes on human chromosome 21 that might be involved in Down syndrome.
- Miller LM, Hess HA, Doroquez DB, Andrews NM
- Null mutations in the lin-31 gene indicate two functions during Caenorhabditis elegans vulval development.
- Genetics. 2000; 156: 1595-602
- Display abstract
The lin-31 gene is required for the proper specification of vulval cell fates in the nematode Caenorhabditis elegans and encodes a member of the winged-helix family of transcription factors. Members of this important family have been identified in many organisms and are known to bind specific DNA targets involved in a variety of developmental processes. DNA sequencing of 13 lin-31 alleles revealed six nonsense mutations and two missense mutations within the DNA-binding domain, plus three deletions, one transposon insertion, and one frameshift mutation that all cause large-scale disruptions in the gene. The missense mutations are amino acid substitutions in the DNA-binding domain and probably disrupt interactions of the LIN-31 transcription factor with its DNA target. In addition, detailed phenotypic analysis of all 19 alleles showed similar penetrance for several characteristics examined. From our analysis we conclude: (1) the null phenotype of lin-31 is the phenotype displayed by almost all of the existing alleles, (2) the DNA-binding domain plays a critical role in LIN-31 function, and (3) direct screens for multivulva and vulvaless mutants will probably yield only null (or strong) alleles of lin-31.
- Chamberlin HM, Thomas JH
- The bromodomain protein LIN-49 and trithorax-related protein LIN-59 affect development and gene expression in Caenorhabditis elegans.
- Development. 2000; 127: 713-23
- Display abstract
We have molecularly characterized the lin-49 and lin-59 genes in C. elegans, and found their products are related to Drosophila trithorax group (trx-G) proteins and other proteins implicated in chromatin remodelling. LIN-49 is structurally most similar to the human bromodomain protein BR140, and LIN-59 is most similar to the Drosophila trx-G protein ASH1. In C. elegans, lin-49 and lin-59 are required for the normal development of the mating structures of the adult male tail, for the normal morphology and function of hindgut (rectum) cells in both males and hermaphrodites and for the maintenance of structural integrity in the hindgut and egg-laying system in adults. Expression of the Hox genes egl-5 and mab-5 is reduced in lin-49 and lin-59 mutants, suggesting lin-49 and lin-59 regulate HOM-C gene expression in C. elegans as the trx-G genes do in Drosophila. lin-49 and lin-59 transgenes are expressed widely throughout C. elegans animals. Thus, in contrast to the C. elegans Polycomb group (Pc-G)-related genes mes-2 and mes-6 that function primarily in the germline, we propose lin-49 and lin-59 function in somatic development similar to the Drosophila trx-G genes.
- Davies AG, Spike CA, Shaw JE, Herman RK
- Functional overlap between the mec-8 gene and five sym genes in Caenorhabditis elegans.
- Genetics. 1999; 153: 117-34
- Display abstract
Earlier work showed that the Caenorhabditis elegans gene mec-8 encodes a regulator of alternative RNA splicing and that mec-8 null mutants have defects in sensory neurons and body muscle attachment but are generally viable and fertile. We have used a genetic screen to identify five mutations in four genes, sym-1-sym-4, that are synthetically lethal with mec-8 loss-of-function mutations. The phenotypes of sym single mutants are essentially wild type. mec-8; sym-1 embryos arrest during embryonic elongation and exhibit defects in the attachment of body muscle to extracellular cuticle. sym-1 can encode a protein containing a signal sequence and 15 contiguous leucine-rich repeats. A fusion of sym-1 and the gene for green fluorescent protein rescued the synthetic lethality of mec-8; sym-1 mutants; the fusion protein was secreted from the apical hypodermal surface of the embryo. We propose that SYM-1 helps to attach body muscle to the extracellular cuticle and that another gene that is dependent upon mec-8 for pre-mRNA processing overlaps functionally with sym-1. RNA-mediated interference experiments indicated that a close relative of sym-1 functionally overlaps both sym-1 and mec-8 in affecting muscle attachment. sym-2, sym-3, and sym-4 appear to provide additional functions that are essential in the absence of mec-8(+).
- Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV
- The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode caenorhabditis elegans.
- Genes Dev. 1999; 13: 2838-51
- Display abstract
Establishment of anterior-posterior (a-p) polarity in the Caenorhabditis elegans embryo depends on filamentous (F-) actin. Previously, we isolated an F-actin-binding protein that was enriched in the anterior cortex of the one-cell embryo and was hypothesized to link developmental polarity to the actin cytoskeleton. Here, we identify this protein, POD-1, as a new member of the coronin family of actin-binding proteins. We have generated a deletion within the pod-1 gene. Elimination of POD-1 from early embryos results in a loss of physical and molecular asymmetries along the a-p axis. For example, PAR-1 and PAR-3, which themselves are polarized and required for a-p polarity, are delocalized in pod-1 mutant embryos. However, unlike loss of PAR proteins, loss of POD-1 gives rise to the formation of abnormal cellular structures, namely large vesicles of endocytic origin, membrane protrusions, unstable cell divisions, a defective eggshell, and deposition of extracellular material. We conclude that, analogous to coronin, POD-1 plays an important role in intracellular trafficking and organizing specific aspects of the actin cytoskeleton. We propose models to explain how the role of POD-1 in basic cellular processes could be linked to the generation of polarity along the embryonic a-p axis.
- Maloof JN, Whangbo J, Harris JM, Jongeward GD, Kenyon C
- A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans.
- Development. 1999; 126: 37-49
- Display abstract
The specification of body pattern along the anteroposterior (A/P) body axis is achieved largely by the actions of conserved clusters of Hox genes. Limiting expression of these genes to localized regional domains and controlling the precise patterns of expression within those domains is critically important for normal patterning. Here we report that egl-20, a C. elegans gene required to activate expression of the Hox gene mab-5 in the migratory neuroblast QL, encodes a member of the Wnt family of secreted glycoproteins. We have found that a second Wnt pathway gene, bar-1, which encodes a beta-catenin/Armadillo-like protein, is also required for activation of mab-5 expression in QL. In addition, we describe the gene pry-1, which is required to limit expression of the Hox genes lin-39, mab-5 and egl-5 to their correct local domains. We find that egl-20, pry-1 and bar-1 all function in a linear genetic pathway with conserved Wnt signaling components, suggesting that a conserved Wnt pathway activates expression of mab-5 in the migratory neuroblast QL. Moreover, we find that members of this Wnt signaling system play a major role in both the general and fine-scale control of Hox gene expression in other cell types along the A/P axis.
- Selfors LM, Schutzman JL, Borland CZ, Stern MJ
- soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling.
- Proc Natl Acad Sci U S A. 1998; 95: 6903-8
- Display abstract
Activation of fibroblast growth factor (FGF) receptors elicits diverse cellular responses including growth, mitogenesis, migration, and differentiation. The intracellular signaling pathways that mediate these important processes are not well understood. In Caenorhabditis elegans, suppressors of clr-1 identify genes, termed soc genes, that potentially mediate or activate signaling through the EGL-15 FGF receptor. We demonstrate that three soc genes, soc-1, soc-2, and sem-5, suppress the activity of an activated form of the EGL-15 FGF receptor, consistent with the soc genes functioning downstream of EGL-15. We show that soc-2 encodes a protein composed almost entirely of leucine-rich repeats, a domain implicated in protein-protein interactions. We identified a putative human homolog, SHOC-2, which is 54% identical to SOC-2. We find that shoc-2 maps to 10q25, shoc-2 mRNA is expressed in all tissues assayed, and SHOC-2 protein is cytoplasmically localized. Within the leucine-rich repeats of both SOC-2 and SHOC-2 are two YXNX motifs that are potential tyrosine-phosphorylated docking sites for the SEM-5/GRB2 Src homology 2 domain. However, phosphorylation of these residues is not required for SOC-2 function in vivo, and SHOC-2 is not observed to be tyrosine phosphorylated in response to FGF stimulation. We conclude that this genetic system has allowed for the identification of a conserved gene implicated in mediating FGF receptor signaling in C. elegans.
- Ruvkun G, Hobert O
- The taxonomy of developmental control in Caenorhabditis elegans.
- Science. 1998; 282: 2033-41
- Display abstract
The Caenorhabditis elegans genome sequence was surveyed for transcription factor and signaling gene families that have been shown to regulate development in a variety of species. About 10 to 25 percent of the genes in most of the gene families already have been genetically analyzed in C. elegans, about half of the genes detect probable orthologs in other species, and about 10 to 25 percent of the genes are, at present, unique to C. elegans. Caenorhabditis elegans is also missing genes that are found in vertebrates and other invertebrates. Thus the genome sequence reveals universals in developmental control that are the legacy of metazoan complexity before the Cambrian explosion, as well as genes that have been more recently invented or lost in particular phylogenetic lineages.
- Mariani M et al.
- Mab21, the mouse homolog of a C. elegans cell-fate specification gene, participates in cerebellar, midbrain and eye development.
- Mech Dev. 1998; 79: 131-5
- Display abstract
A multitude of regulatory genes are involved in phylogenetically conserved developmental cascades required for the patterning, cell-type specification, and differentiation of specific central nervous system (CNS) structures. Here, we describe the distribution of a mouse transcript encoding a homolog of the C. elegans mab-21 gene. In the nematode tail, mab-21 is required for the short-range patterning and cell-fate determination events mediated by egl-5 and mab-18, two homeobox genes homologous to Abd-B and Pax6, respectively. In mouse midgestation embryogenesis, Mab21 is expressed at its highest levels in the rhombencephalon, cerebellum, midbrain, and prospective neural retina. Our data and the genetic interactions previously documented in the nematode suggest that Mab21 may represent a novel, important regulator of mammalian cerebellum and eye development.
- Hobert O, Ruvkun G
- A common theme for LIM homeobox gene function across phylogeny?
- Biol Bull. 1998; 195: 377-80
- Larminie CG, White RJ
- Identification of a putative BRF homologue in the genome of Caenorhabditis elegans.
- DNA Seq. 1998; 9: 49-58
- Display abstract
We have identified a putative gene within the Caenorhabditis elegans genome which has the potential to encode a protein homologous to BRF, an RNA polymerase III general transcription factor. The predicted protein shares very similar overall structure with human and yeast BRF. In particular, its N-terminal half comprises a zinc-ribbon motif and a TR domain which is also present in the cyclin box. The C. elegans protein is more similar to human BRF than to the yeast BRF proteins, as would be expected from an evolutionary standpoint. Alignment of the C. elegans protein with the four known BRF proteins reveals two blocks conserved between all five sequences within the diverged C-terminal region. Profile searches using these regions suggest that they may contain evolutionarily conserved motifs. These comparisons provide insight into the structure and function of an important transcription factor.
- Baker JP, Titus MA
- A family of unconventional myosins from the nematode Caenorhabditis elegans.
- J Mol Biol. 1997; 272: 523-35
- Display abstract
The unconventional myosins are a superfamily of actin-based motor proteins that are expressed in a wide range of cell types and organisms. Thirteen classes of unconventional myosin have been defined, and current efforts are focused on elucidating their individual functions in vivo. Here, we report the identification of a family of unconventional myosin genes in Caenorhabditis elegans. The hum-1, hum-2, hum-3 and hum-6 (heavy chain of an unconventional myosin) genes encode members of myosin classes I, V, VI and VII, respectively. The hum-4 gene encodes a high molecular mass myosin (ca 307 kDa) that is one of the most highly divergent myosins, and is the founding and only known member of class XII. The physical position of each hum gene has been determined. The hum-1, hum-2 and hum-3 genes have been mapped by extrapolation near previously uncharacterized mutations, several of which are lethal, identifying potentially essential unconventional myosin genes in C. elegans.
- Ahringer J
- Posterior patterning by the Caenorhabditis elegans even-skipped homolog vab-7.
- Genes Dev. 1996; 10: 1120-30
- Display abstract
Patterning of the posterior end in animals is not well understood. Homologs of Drosophila even-skipped (eve) have a similar posterior expression pattern in many animals, and in vertebrates they are linked physically to the "posterior" ends of homeotic clusters (HOM-C), suggesting a conserved role in posterior development. However, the function of this posterior expression is not known. Here I show that the Caenorhabditis elegans gene vab-7 encodes an eve homolog that is required for posterior development and expressed in a pattern strikingly similar to that of vertebrate eve genes. Using a four-dimensional recording system, I found that posterior body muscles and the posterior epidermis are patterned abnormally in vab-7 mutants, but commitment to muscle and epidermal fates is normal. Furthermore, vab-7 activity is required for the complete expression of the most posterior HOM-C gene egl-5 in muscle cells, supporting the idea that eve homologs may act with the HOM-C to determine posterior cell fates. The conservation of sequence and expression pattern between vab-7 and eve homologs in other animals argues that most eve genes have posterior mesodermal and ectodermal patterning functions.
- Harris J, Honigberg L, Robinson N, Kenyon C
- Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position.
- Development. 1996; 122: 3117-31
- Display abstract
In C. elegans, the Hox gene mab-5, which specifies the fates of cells in the posterior body region, has been shown to direct the migrations of certain cells within its domain of function. mab-5 expression switches on in the neuroblast QL as it migrates into the posterior body region. mab-5 activity is then required for the descendants of QL to migrate to posterior rather than anterior positions. What information activates Hox gene expression during this cell migration? How are these cells subsequently guided to their final positions? We address these questions by describing four genes, egl-20, mig-14, mig-1 and lin-17, that are required to activate expression of mab-5 during migration of the QL neuroblast. We find that two of these genes, egl-20 and mig-14, also act in a mab-5-independent way to determine the final stopping points of the migrating Q descendants. The Q descendants do not migrate toward any obvious physical targets in wild-type or mutant animals. Therefore, these genes appear to be part of a system that positions the migrating Q descendants along the anteroposterior axis.
- Wickens M, Takayama K
- RNA. Deviants--or emissaries.
- Nature. 1994; 367: 17-8
- Garriga G, Guenther C, Horvitz HR
- Migrations of the Caenorhabditis elegans HSNs are regulated by egl-43, a gene encoding two zinc finger proteins.
- Genes Dev. 1993; 7: 2097-109
- Display abstract
During embryonic development, the two Caenorhabditis elegans HSN motor neurons migrate from their birthplace in the tail to positions near the middle of the embryo. Here, we demonstrate that of all cells that undergo long-range migrations, only the HSNs are affected in animals that lack function of the egl-43 gene. We also show that egl-43 function is required for normal development of phasmid neurons, which are sensory neurons located in the tail. The egl-43 gene encodes two proteins containing zinc finger motifs that are similar to the zinc fingers of the murine Evi-1 proto-oncoprotein. Our genetic and molecular results suggest that egl-43 encodes two transcription factors and acts to control HSN migration and phasmid neuron development, presumably by regulating other genes that function directly in these processes.
- Salser SJ, Loer CM, Kenyon C
- Multiple HOM-C gene interactions specify cell fates in the nematode central nervous system.
- Genes Dev. 1993; 7: 1714-24
- Display abstract
Intricate patterns of overlapping HOM-C gene expression along the A/P axis have been observed in many organisms; however, the significance of these patterns in establishing the ultimate fates of individual cells is not well understood. We have examined the expression of the Caenorhabditis elegans Antennapedia homolog mab-5 and its role in specifying cell fates in the posterior of the ventral nerve cord. We find that the pattern of fates specified by mab-5 not only depends on mab-5 expression but also on post-translational interactions with the neighboring HOM-C gene lin-39 and a second, inferred gene activity. Where mab-5 expression overlaps with lin-39 activity, they can interact in two different ways depending on the cell type: They can either effectively neutralize one another where they are both expressed or lin-39 can predominate over mab-5. As observed for Antennapedia in Drosophila, expression of mab-5 itself is repressed by the next most posterior HOM-C gene, egl-5. Thus, a surprising diversity in HOM-C regulatory mechanisms exists within a small set of cells even in a simple organism.
- Chalfie M
- Homeobox genes in Caenorhabditis elegans.
- Curr Opin Genet Dev. 1993; 3: 275-7
- Display abstract
It is estimated that approximately 60 homeobox genes occur in the nematode Caenorhabditis elegans. These genes are required for specifying the cell fate of both precursor and terminally differentiated cells. In some cases, highly specific cell functions, such as migration pattern or synaptic connectivity, require the action of these genes.
- Bennett KL, Ward S
- Neither a germ line-specific nor several somatically expressed genes are lost or rearranged during embryonic chromatin diminution in the nematode Ascaris lumbricoides var. suum.
- Dev Biol. 1986; 118: 141-7
- Display abstract
Ascaris lumbricoides var. suum is a parasitic nematode of pigs. Its embryos undergo chromatin diminution between the third and fifth cleavages, resulting in the loss of about 30% of the DNA from all somatic precursor cells while the germ line DNA stays intact. Most of the eliminated DNA has been shown to be satellite sequences. Theodor Boveri [(1910) In "Festschrift fur R. Hertwig, III," Vol. 3, pp. 131-214, Fischer] proposed that functions essential only to the germ line might be lost from the soma. We have examined this proposal by cloning a gene encoding the major sperm protein (MSP) using a cloned MSP gene from Caenorhabditis elegans as a probe. The MSP appears to be expressed only in the testis of Ascaris, as it is in Caenorhabditis. Actin and alpha tubulin were also cloned to serve as somatically expressed gene controls. By probing Southern blots of somatic and germ line DNA with these cloned genes, it was found that none of them was lost or rearranged during chromatin diminution. Thus at least one germ line-specific gene is neither lost nor rearranged during chromatin diminution. We also found that the two nematode species differ widely in their numbers of both MSP and actin genes. Caenorhabditis has greater than 30 MSP genes, but Ascaris has no more than three; whereas Ascaris has many more actin genes than Caenorhabditis.