Secondary literature sources for FHA
The following references were automatically generated.
- Lee CH, Chung JH
- The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation.
- J Biol Chem. 2001; 276: 30537-41
- Display abstract
hCds1 (Chk2) is an evolutionarily conserved kinase that functions in DNA damage response and cell cycle checkpoint. The Cds1 family of kinases are activated by a family of large phosphatidylinositol 3-kinase-like kinases. In humans, ataxia telangiectasia-mutated (ATM) and ataxia-telangiectasia and Rad3-related kinases activate hCds1 by phosphorylating Thr(68) . hCds1 and Cds1-related kinases contain the FHA (forkhead-associated) domain, which appears to be important for integrating the DNA damage signal. It is not known how ATM phosphorylation activates hCds1 function and whether the phosphorylation is linked to the FHA. Here, we demonstrate that the hCds1-FHA domain is essential for Thr(68) phosphorylation. Thr(68) phosphorylation, in turn, is required for ionizing radiation-induced autophosphorylation of two amino acid residues in hCds1, Thr(383) and Thr(387). These two amino acid residues, located in the activation loop of hCds1, are conserved in hCds1-related kinases and are essential for hCds1 activity. Thus, the hCds1-FHA domain mediates a chain of phosphorylation events on hCds1, which includes phosphorylation by ATM and hCds1 autophosphorylation, in response to DNA damage.
- Jones S, Sgouros J
- The cohesin complex: sequence homologies, interaction networks and shared motifs.
- Genome Biol. 2001; 2: 9-9
- Display abstract
BACKGROUND: Cohesin is a macromolecular complex that links sister chromatids together at the metaphase plate during mitosis. The links are formed during DNA replication and destroyed during the metaphase-to-anaphase transition. In budding yeast, the 14S cohesin complex comprises at least two classes of SMC (structural maintenance of chromosomes) proteins - Smc1 and Smc3 - and two SCC (sister-chromatid cohesion) proteins - Scc1 and Scc3. The exact function of these proteins is unknown. RESULTS: Searches of protein sequence databases have revealed new homologs of cohesin proteins. In mouse, Mmip1 (Mad member interacting protein 1) and Smc3 share 99% sequence identity and are products of the same gene. A phylogenetic tree of SMC homologs reveals five families: Smc1, Smc2, Smc3, Smc4 and an ancestral family that includes the sequences from the Archaea and Eubacteria. This ancestral family also includes sequences from eukaryotes. A cohesion interaction network, comprising 17 proteins, has been constructed using two proteomic databases. Genes encoding six proteins in the cohesion network share a common upstream region that includes the MluI cell-cycle box (MCB) element. Pairs of the proteins in this network share common sequence motifs that could represent common structural features such as binding sites. Scc2 shares a motif with Chk1 (kinase checkpoint protein), that comprises part of the serine/threonine protein kinase motif, including the active-site residue. CONCLUSIONS: We have combined genomic and proteomic data into a comprehensive network of information to reach a better understanding of the function of the cohesin complex. We have identified new SMC homologs, created a new SMC phylogeny and identified shared DNA and protein motifs. The potential for Scc2 to function as a kinase - a hypothesis that needs to be verified experimentally - could provide further evidence for the regulation of sister-chromatid cohesion by phosphorylation mechanisms, which are currently poorly understood.
- Pike BL, Hammet A, Heierhorst J
- Role of the N-terminal forkhead-associated domain in the cell cycle checkpoint function of the Rad53 kinase.
- J Biol Chem. 2001; 276: 14019-26
- Display abstract
Forkhead-associated (FHA) domains are multifunctional phosphopeptide-binding modules and are the hallmark of the conserved family of Rad53-like checkpoint protein kinases. Rad53-like kinases, including the human tumor suppressor protein Chk2, play crucial roles in cell cycle arrest and activation of repair processes following DNA damage and replication blocks. Here we show that ectopic expression of the N-terminal FHA domain (FHA1) of the yeast Rad53 kinase causes a growth defect by arresting the cell cycle in G(1). This phenotype was highly specific for the Rad53-FHA1 domain and not observed with the similar Rad53-FHA2, Dun1-FHA, and Chk2-FHA domains, and it was abrogated by mutations that abolished binding to a phosphothreonine-containing peptide in vitro. Furthermore, replacement of the RAD53 gene with alleles containing amino acid substitutions in the FHA1 domain resulted in an increased DNA damage sensitivity in vivo. Taken together, these data demonstrate that the FHA1 domain contributes to the checkpoint function of Rad53, possibly by associating with a phosphorylated target protein in response to DNA damage in G(1).
- Blanchard H et al.
- Crystallization and preliminary X-ray diffraction studies of FHA domains of Dun1 and Rad53 protein kinases.
- Acta Crystallogr D Biol Crystallogr. 2001; 57: 459-61
- Display abstract
Forkhead-associated (FHA) domains are modular protein-protein interaction domains of approximately 130 amino acids present in numerous signalling proteins. FHA-domain-dependent protein interactions are regulated by phosphorylation of target proteins and FHA domains may be multifunctional phosphopeptide-recognition modules. FHA domains of the budding yeast cell-cycle checkpoint protein kinases Dun1p and Rad53p have been crystallized. Crystals of the Dun1-FHA domain exhibit the symmetry of the space group P6(1)22 or P6(5)22, with unit-cell parameters a = b = 127.3, c = 386.3 A; diffraction data have been collected to 3.1 A resolution on a synchrotron source. Crystals of the N-terminal FHA domain (FHA1) of Rad53p diffract to 4.0 A resolution on a laboratory X-ray source and have Laue-group symmetry 4/mmm, with unit-cell parameters a = b = 61.7, c = 104.3 A.
- Kubota H, Sakaki Y, Ito T
- GI domain-mediated association of the eukaryotic initiation factor 2alpha kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast.
- J Biol Chem. 2000; 275: 20243-6
- Display abstract
In response to the starvation of a single amino acid, the budding yeast Saccharomyces cerevisiae activates numerous genes involved in various amino acid biosynthetic pathways, all of which are under the control of transcription factor GCN4. This general amino acid control response is based on de-repressed translation of GCN4 mRNA, which is induced by the activation of the eIF2alpha kinase, GCN2. Although it is known that in vivo activation of GCN2 requires GCN1, the mode of GCN1 action remains to be elucidated at the molecular level. Here, we show that GCN2 interacts with GCN1 via the GI domain, a novel protein-binding module that occurs at the N terminus; mutations to conserved residues of this domain abolish its binding to GCN1. Furthermore, the yeast cells with GCN2 defective in interaction with GCN1 fail to display general control response. A similar phenotype is observed in cells overexpressing the GI domain of GCN2 or its target region on GCN1. Thus, GI domain-mediated association of GCN2 to GCN1 is required for general amino acid control. This finding provides the first insight into the molecular mechanism for the activation of GCN2 by GCN1.
- Hammet A et al.
- FHA domain boundaries of the dun1p and rad53p cell cycle checkpoint kinases.
- FEBS Lett. 2000; 471: 141-6
- Display abstract
Dun1p and Rad53p of the budding yeast Saccharomyces cerevisiae are members of a conserved family of cell cycle checkpoint protein kinases that contain forkhead-associated (FHA) domains. Here, we demonstrate that these FHA domains contain 130-140 residues, and are thus considerably larger than previously predicted by sequence comparisons (55-75 residues). In vivo, expression of the proteolytically defined Dun1p FHA domain, but not a fragment containing only the predicted domain boundaries, inhibited the transcriptional induction of repair genes following replication blocks. This indicates that the non-catalytic FHA domain plays an important role in the transcriptional function of the Dun1p protein kinase.
- Liao H et al.
- Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9.
- J Mol Biol. 2000; 304: 941-51
- Display abstract
Forkhead-associated (FHA) domains have been shown to recognize both pThr and pTyr-peptides. The solution structures of the FHA2 domain of Rad53 from Saccharomyces cerevisiae, and its complex with a pTyr peptide, have been reported recently. We now report the solution structure of the other FHA domain of Rad53, FHA1 (residues 14-164), and identification of binding sites of FHA1 and its target protein Rad9. The FHA1 structure consists of 11 beta-strands, which form two large twisted anti-parallel beta-sheets folding into a beta-sandwich. Three short alpha-helices were also identified. The beta-strands are linked by several loops and turns. These structural features of free FHA1 are similar to those of free FHA2, but there are significant differences in the loops. Screening of a peptide library [XXX(pT)XXX] against FHA1 revealed an absolute requirement for Asp at the +3 position and a preference for Ala at the +2 position. These two criteria are met by a pThr motif (192)TEAD(195) in Rad9. Surface plasmon resonance analysis showed that a pThr peptide containing this motif, (188)SLEV(pT)EADATFVQ(200) from Rad9, binds to FHA1 with a K(d) value of 0.36 microM. Other peptides containing pTXXD sequences also bound to FHA1, but less tightly (K(d)=4-70 microM). These results suggest that Thr192 of Rad9 is the likely phosphorylation site recognized by the FHA1 domain of Rad53. The tight-binding peptide was then used to identify residues of FHA1 involved in the interaction with the pThr peptide. The results are compared with the interactions between the FHA2 domain and a pTyr peptide derived from Rad9 reported previously.
- Wojda I
- [The group of protein kinases CKI]
- Postepy Biochem. 2000; 46: 140-7
- Liu Y, Vidanes G, Lin YC, Mori S, Siede W
- Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest.
- Mol Gen Genet. 2000; 262: 1132-46
- Display abstract
Chk1 is an evolutionarily conserved protein kinase that plays an essential role in mediating G2 arrest in response to DNA damage in Schizosaccharomyces pombe and human cells. It functions by maintaining the inhibition (by phosphorylation of a specific tyrosine residue) of the cyclin-dependent kinase Cdc2 that initiates the G2/M transition. Here, we characterize a structural homologue of Chk1 in the budding yeast Saccharomyces cerevisiae. In this organism, G2/M arrest following DNA damage is considered to be independent of tyrosine phosphorylation of the Cdc2 homologue Cdc28. Nevertheless, a partial defect in G2/M-phase arrest following treatment with ionizing radiation, but not UV radiation, is associated with deletion of CHK1. The fact that such an effect remains detectable in cells synchronized with the microtubule inhibitor nocodazole prior to gamma irradiation implies the existence of a CHK1-dependent checkpoint in M phase. We conclude from epistasis analysis that Chk1 participates in the Pds1-dependent subpathway of M-phase arrest. In spite of the partial checkpoint defect of the chk1 mutant, the survival of colony-forming cells is not notably decreased following UV and gamma irradiation. In two-hybrid screens, we identified a heme-binding stress protein (encoded by the yeast ORF YNL234W), a protein involved in genomic silencing (Sas3) and Chk1 itself as interacting partners of Chk1.
- Westerholm-Parvinen A, Vernos I, Serrano L
- Kinesin subfamily UNC104 contains a FHA domain: boundaries and physicochemical characterization.
- FEBS Lett. 2000; 486: 285-90
- Display abstract
By sequence analysis we show that the U104 domain found in the UNC104 subfamily of kinesins is a forkhead homology-associated domain (FHA). A combination of limited proteolysis, mass spectroscopy, and physicochemical analysis define this domain as a genuine autonomously folding domain. Our data show that the FHA domain is shorter than previously reported since the C-terminal alpha-helix is not part of its minimum core. Key amino acids postulated to recognize phosphorylated residues are conserved. These data suggest that the kinesin FHA domains are functional domains involved in protein-protein interactions regulated by phosphorylation.
- Morehouse H, Buratowski RM, Silver PA, Buratowski S
- The importin/karyopherin Kap114 mediates the nuclear import of TATA-binding protein.
- Proc Natl Acad Sci U S A. 1999; 96: 12542-7
- Display abstract
Two high copy suppressors of temperature-sensitive TATA-binding protein (TBP) mutants were isolated. One suppressor was TIF51A, which encodes eukaryotic translation initiation factor 5A. The other high copy suppressor, YGL241W, also known as KAP114, is one of 14 importin/karyopherin proteins in yeast. These proteins mediate the transport of specific macromolecules into and out of the nucleus. Cells lacking Kap114 partially mislocalize TBP to the cytoplasm. Kap114 binds TBP in vitro, and binding is disrupted in the presence of GTPgammaS. Therefore, Kap114 is an importer of TBP into the nucleus, but alternative import pathways must also exist.
- Chen L, Liu TH, Walworth NC
- Association of Chk1 with 14-3-3 proteins is stimulated by DNA damage.
- Genes Dev. 1999; 13: 675-85
- Display abstract
The protein kinase Chk1 is required for cell cycle arrest in response to DNA damage. We have found that the 14-3-3 proteins Rad24 and Rad25 physically interact with Chk1 in fission yeast. Association of Chk1 with 14-3-3 proteins is stimulated in response to DNA damage. DNA damage results in phosphorylation of Chk1 and the 14-3-3 proteins bind preferentially to the phosphorylated form. Genetic analysis has independently implicated both Rad24 and Rad25 in the DNA-damage checkpoint pathway. We suggest that DNA damage-dependent association of phosphorylated Chk1 with 14-3-3 proteins mediates an important step along the DNA-damage checkpoint pathway, perhaps by directing Chk1 to a particular substrate or to a particular location within the cell. An additional role for 14-3-3 proteins in the DNA-damage checkpoint has been suggested based on the observation that human Chk1 can phosphorylate Cdc25C in vitro creating a 14-3-3 binding site. Our results suggest that in fission yeast the interaction between the 14-3-3 proteins and Cdc25 does not require Chk1 function and is unaffected by DNA damage, in sharp contrast to the interaction between the 14-3-3 proteins and Chk1.
- Brown AL, Lee CH, Schwarz JK, Mitiku N, Piwnica-Worms H, Chung JH
- A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage.
- Proc Natl Acad Sci U S A. 1999; 96: 3745-50
- Display abstract
Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. Much of our current understanding of checkpoints comes from genetic studies conducted in yeast. In the fission yeast Schizosaccharomyces pombe (Sp), SpRad3 is an essential component of both the DNA damage and DNA replication checkpoints. The SpChk1 and SpCds1 protein kinases function downstream of SpRad3. SpChk1 is an effector of the DNA damage checkpoint and, in the absence of SpCds1, serves an essential function in the DNA replication checkpoint. SpCds1 functions in the DNA replication checkpoint and in the S phase DNA damage checkpoint. Human homologs of both SpRad3 and SpChk1 but not SpCds1 have been identified. Here we report the identification of a human cDNA encoding a protein (designated HuCds1) that shares sequence, structural, and functional similarity to SpCds1. HuCds1 was modified by phosphorylation and activated in response to ionizing radiation. It was also modified in response to hydroxyurea treatment. Functional ATM protein was required for HuCds1 modification after ionizing radiation but not after hydroxyurea treatment. Like its fission yeast counterpart, human Cds1 phosphorylated Cdc25C to promote the binding of 14-3-3 proteins. These findings suggest that the checkpoint function of HuCds1 is conserved in yeast and mammals.
- Sanchez Y et al.
- Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.
- Science. 1999; 286: 1166-71
- Display abstract
In response to DNA damage, cells activate checkpoint pathways that prevent cell cycle progression. In fission yeast and mammals, mitotic arrest in response to DNA damage requires inhibitory Cdk phosphorylation regulated by Chk1. This study indicates that Chk1 is required for function of the DNA damage checkpoint in Saccharomyces cerevisiae but acts through a distinct mechanism maintaining the abundance of Pds1, an anaphase inhibitor. Unlike other checkpoint mutants, chk1 mutants were only mildly sensitive to DNA damage, indicating that checkpoint functions besides cell cycle arrest influence damage sensitivity. Another kinase, Rad53, was required to both maintain active cyclin-dependent kinase 1, Cdk1(Cdc28), and prevent anaphase entry after checkpoint activation. Evidence suggests that Rad53 exerts its role in checkpoint control through regulation of the Polo kinase Cdc5. These results support a model in which Chk1 and Rad53 function in parallel through Pds1 and Cdc5, respectively, to prevent anaphase entry and mitotic exit after DNA damage. This model provides a possible explanation for the role of Cdc5 in DNA damage checkpoint adaptation.
- Soulier J, Lowndes NF
- The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9-Rad9 interaction after DNA damage.
- Curr Biol. 1999; 9: 551-4
- Display abstract
The Saccharomyces cerevisiae checkpoint protein Rad9 is required for transient cell-cycle arrest and transcriptional induction of DNA-repair genes in response to DNA damage [1]. It contains a carboxyterminal tandem repeat of the BRCT (BRCA1 carboxyl terminus) motif, a motif that is also found in many proteins involved in various aspects of DNA repair, recombination and checkpoint control [2][3]. We produced yeast strains expressing Rad9 in which the BRCT domain had been deleted or which harboured point mutations in the highly conserved aromatic residue of each BRCT motif. Rates of survival and checkpoint delay of the mutants after ultraviolet (UV) irradiation were essentially equivalent to those of rad9Delta (null) cells, demonstrating that the BRCT domain is required for Rad9 function. Rad9 hyperphosphorylation, which occurs after DNA damage [4][5][6], was absent in the BRCT mutants, as was Rad9-dependent phosphorylation of the Rad53 protein. A two-hybrid approach identified a specific interaction between the Rad9 BRCT domain and itself. Biochemical analysis in vitro and in vivo confirmed this interaction and, furthermore, demonstrated that the Rad9 BRCT domain preferentially interacted with the hyperphosphorylated forms of Rad9. This interaction was suppressed by mutations of the BRCT motifs that caused null phenotypes in vivo, suggesting that Rad9 oligomerization is required for Rad9 function after DNA damage.
- Sanchez Y et al.
- Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25.
- Science. 1997; 277: 1497-501
- Display abstract
In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.
- Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H
- Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216.
- Science. 1997; 277: 1501-5
- Display abstract
Human Cdc25C is a dual-specificity protein phosphatase that controls entry into mitosis by dephosphorylating the protein kinase Cdc2. Throughout interphase, but not in mitosis, Cdc25C was phosphorylated on serine-216 and bound to members of the highly conserved and ubiquitously expressed family of 14-3-3 proteins. A mutation preventing phosphorylation of serine-216 abrogated 14-3-3 binding. Conditional overexpression of this mutant perturbed mitotic timing and allowed cells to escape the G2 checkpoint arrest induced by either unreplicated DNA or radiation-induced damage. Chk1, a fission yeast kinase involved in the DNA damage checkpoint response, phosphorylated Cdc25C in vitro on serine-216. These results indicate that serine-216 phosphorylation and 14-3-3 binding negatively regulate Cdc25C and identify Cdc25C as a potential target of checkpoint control in human cells.
- Saka Y, Esashi F, Matsusaka T, Mochida S, Yanagida M
- Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1.
- Genes Dev. 1997; 11: 3387-400
- Display abstract
Fission yeast Cut5/Rad4 plays a unique role in the genome maintenance as it is required for replication, replication checkpoint, and normal UV sensitivity. It is unknown, however, how Cut5 protein is linked to other checkpoint proteins, and what part it plays in replication and UV sensitivity. Here we report that Cut5 interacts with a novel checkpoint protein Crb2 and that this interaction is needed for normal genome maintenance. The carboxyl terminus of Crb2 resembles yeast Rad9 and human 53BP1 and BRCA1. Crb2 is required for checkpoint arrests induced by irradiation and polymerase mutations, but not for those induced by inhibited nucleotide supply. Upon UV damage, Crb2 is transiently modified, probably phosphorylated, with a similar timing of phosphorylation in Chk1 kinase, which is reported to restrain Cdc2 activation. Crb2 modification requires other damage-sensing checkpoint proteins but not Chk1, suggesting that Crb2 acts at the upstream of Chk1. The modified Crb2 exists as a slowly sedimenting form, whereas Crb2 in undamaged cells is in a rapidly sedimenting structure. Cut5 and Crb2 interact with Chk1 in a two-hybrid system. Moreover, moderate overexpression of Chk1 suppresses the phenotypes of cut5 and crb2 mutants. Cut5, Crb2, and Chk1 thus may form a checkpoint sensor-transmitter pathway to arrest the cell cycle.
- Kauffman S
- Self-replication. Even peptides do it.
- Nature. 1996; 382: 496-7