Secondary literature sources for GuKc
The following references were automatically generated.
- Kim JJ, Rho SH, Im YJ, Kim EJ, Eom SH
- Crystallization and preliminary X-ray diffraction studies of the guanylate kinase-like domain of PSD-95 protein from rat.
- Acta Crystallogr D Biol Crystallogr. 2001; 57: 616-7
- Display abstract
The PSD-95 (postsynaptic density-95) protein, one of the members of the MAGUK (membrane-associated guanylate kinase) family, is composed of three PDZ domains, one SH3 domain and one guanylate kinase-like (GK) domain. The GK domain mediates the scaffolding function of PSD-95 by protein--protein interaction. Here, the GK domain was subcloned, expressed as an intein fusion protein, purified without the intein and then crystallized at room temperature by the hanging-drop vapour-diffusion method using PEG 8000 as a precipitant. The complete native data set was collected to a resolution of 2.35 A using flash-cooling. The crystals belong to the primitive tetragonal space group P4(3) (or P4(1)), with unit-cell parameters a = b = 70.03 (4), c = 37.64 (1) A.
- Zhang Y, Luan Z, Liu A, Hu G
- The scaffolding protein CASK mediates the interaction between rabphilin3a and beta-neurexins.
- FEBS Lett. 2001; 497: 99-102
- Display abstract
CASK, a member of the membrane-associated guanylate kinase (MAGUK) superfamily, binds to the carboxyl-terminus of beta-neurexins on the intracellular side of the presynaptic membrane. The guanylate kinase-like (GUK) domains of MAGUKs lack kinase activities, but might be important for mediating specific protein-protein interaction. By a yeast two-hybrid approach, we identified an interaction between the GUK domain of CASK and the C2B domain of rabphilin3a, a presynaptic protein involved in synaptic vesicle exocytosis. The interaction was confirmed by in vitro GST pull-down and co-immunoprecipitation assays. It was proposed that presynaptic vesicles might be guided to the vicinity of points of exocytosis defined by beta-neurexins via the interaction between rabphilin3a-CASK-beta-neurexins.
- Leonoudakis D, Mailliard W, Wingerd K, Clegg D, Vandenberg C
- Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97.
- J Cell Sci. 2001; 114: 987-98
- Display abstract
The strong inwardly rectifying potassium channels Kir2.x are involved in maintenance and control of cell excitability. Recent studies reveal that the function and localization of ion channels are regulated by interactions with members of the membrane-associated guanylate kinase (MAGUK) protein family. To identify novel interacting MAGUK family members, we constructed GST-fusion proteins with the C termini of Kir2.1, Kir2.2 and Kir2.3. GST affinity-pulldown assays from solubilized rat cerebellum and heart membrane proteins revealed an interaction between all three Kir2.x C-terminal fusion proteins and the MAGUK protein synapse-associated protein 97 (SAP97). A truncated form of the C-terminal GST-Kir2.2 fusion protein indicated that the last three amino acids (S-E-I) are essential for association with SAP97. Affinity interactions using GST-fusion proteins containing the modular domains of SAP97 demonstrate that the second PSD-95/Dlg/ZO-1 (PDZ) domain is sufficient for interaction with Kir2.2. Coimmunoprecipitations demonstrated that endogenous Kir2.2 associates with SAP97 in rat cerebellum and heart. Additionally, phosphorylation of the Kir2.2 C terminus by protein kinase A inhibited the association with SAP97. In rat cardiac ventricular myocytes, Kir2.2 and SAP97 colocalized in striated bands corresponding to T-tubules. In rat cerebellum, Kir2.2 was present in a punctate pattern along SAP97-positive processes of Bergmann glia in the molecular layer, and colocalized with astrocytes and granule cells in the granule cell layer. These results identify a direct association of Kir2.1, Kir2.2 and Kir2.3 with the MAGUK family member SAP97 that may form part of a macromolecular signaling complex in many different tissues.
- Mehta S, Wu H, Garner CC, Marshall J
- Molecular mechanisms regulating the differential association of kainate receptor subunits with SAP90/PSD-95 and SAP97.
- J Biol Chem. 2001; 276: 16092-9
- Display abstract
Recent studies have demonstrated that kainate receptors are associated with members of the SAP90/PSD-95 family (synapse-associated proteins (SAPs)) in neurons and that SAP90 can cluster and modify the electrophysiological properties of GluR6/KA2 kainate receptors when co-expressed in transfected cells. In vivo, SAP90 tightly binds kainate receptor subunits, while SAP97 is only weakly associated, suggesting that this glutamate receptor differentially associates with SAP90/PSD-95 family members. Here, green fluorescent protein (GFP)-tagged chimeras and deletion mutants of SAP97 and SAP90 were employed to define the molecular mechanism underlying their differential association with kainate receptors. Our results show that a weak interaction between GluR6 and the PDZ1 domain of SAP97 can account for the weak association of GluR6 with the full-length SAP97 observed in vivo. Expression studies in HEK293 cells and in vitro binding studies further show that although the individual Src homology 3 and guanylate kinase domains in SAP97 can interact with the C-terminal tail of KA2 subunit, specific intramolecular interactions in SAP97 (e.g. the SAP97 N terminus (S97N) binding to the Src homology 3 domain) interfere with KA2 binding to the full-length molecule. Because receptor subunits are known to segregate to different parts of the neuron, our results imply that differential association of kainate receptors with SAP family proteins may be one mechanism of subcellular localization.
- Kumar V
- Cloning and sequence analysis of lily and tobacco guanylate kinases.
- Mol Biol Rep. 2000; 27: 45-9
- Display abstract
Guanylate kinase is an essential enzyme in the nucleotide biosynthetic pathway, catalyzing the reversible transfer of the terminal phosphoryl group of ATP to GMP or dGMP. This enzyme has been well studied from several organisms and many structural and functional details have been characterized. Animal GMP kinases have also been implicated in signal transduction pathways. However, the corresponding role by plant derived GMP kinases remains to be elucidated. Full-length cDNA clones encoding enzymatically active guanylate kinases were isolated from cDNA libraries of lily and tobacco. Lily cDNA is predicted to encode a 392-amino acid protein with a molecular mass of 43.1 kDa and carries amino- and carboxy- terminal extensions of the guanylate kinase (GK)-like domain. But tobacco cDNA is predicted to encode a smaller protein of 297-amino acids with a molecular mass of 32.7 kDa. The amino acid residues known to participate in the catalytic activity of functionally characterized GMP kinases, are also conserved in GK domains of LGK-1 and NGK-1. The GK domains of NGK-1, LGK-1 and previously characterized AGK-1 from Arabidopsis exhibit 74-84% identity, whereas their N- and C-terminal domains are more divergent with amino acid conservation in the order of 48-55%. Phylogenetic analysis on the deduced amino acid sequences reveals that NGK-1 and LGK-1 form one distinct subgroup along with AGK-1 and AGK-2 homologues from Arabidopsis. Isolation of GMP kinases from diverse plant species like lily and tobacco adds a new dimension in understanding their role in cell signaling pathways that are associated with plant growth and development.
- Wu H et al.
- Intramolecular interactions regulate SAP97 binding to GKAP.
- EMBO J. 2000; 19: 5740-51
- Display abstract
Membrane-associated guanylate kinase homologs (MAGUKs) are multidomain proteins found to be central organizers of cellular junctions. In this study, we examined the molecular mechanisms that regulate the interaction of the MAGUK SAP97 with its GUK domain binding partner GKAP (GUK-associated protein). The GKAP-GUK interaction is regulated by a series of intramolecular interactions. Specifically, the association of the Src homology 3 (SH3) domain and sequences situated between the SH3 and GUK domains with the GUK domain was found to interfere with GKAP binding. In contrast, N-terminal sequences that precede the first PDZ domain in SAP97, facilitated GKAP binding via its association with the SH3 domain. Utilizing crystal structure data available for PDZ, SH3 and GUK domains, molecular models of SAP97 were generated. These models revealed that SAP97 can exist in a compact U-shaped conformation in which the N-terminal domain folds back and interacts with the SH3 and GUK domains. These models support the biochemical data and provide new insights into how intramolecular interactions may regulate the association of SAP97 with its binding partners.
- Hsueh YP, Wang TF, Yang FC, Sheng M
- Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2.
- Nature. 2000; 404: 298-302
- Display abstract
Membrane-associated guanylate kinases (MAGUKs) contain multiple protein-binding domains that allow them to assemble specific multiprotein complexes in particular regions of the cell. CASK/LIN-2, a MAGUK required for EGF receptor localization and signalling in Caenorhabditis elegans, contains a calmodulin-dependent protein kinase-like domain followed by PDZ, SH3 and guanylate kinase-like domains. In adult rat brain, CASK is concentrated at neuronal synapses and binds to the cell-surface proteins neurexin and syndecan and the cytoplasmic proteins Mint/LIN-10 and Veli/LIN-7. Here we report that, through its guanylate kinase domain, CASK interacts with Tbr-1, a T-box transcription factor that is involved in forebrain development. CASK enters the nucleus and binds to a specific DNA sequence (the T-element) in a complex with Tbr-1. CASK acts as a coactivator of Tbr-1 to induce transcription of T-element containing genes, including reelin, a gene that is essential for cerebrocortical development. Our findings show that a MAGUK which is usually associated with cell junctions has a transcription regulation function.
- Naisbitt S et al.
- Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein.
- J Neurosci. 2000; 20: 4524-34
- Display abstract
NMDA receptors interact directly with postsynaptic density-95 (PSD-95), a scaffold protein that organizes a cytoskeletal- signaling complex at the postsynaptic membrane. The molecular mechanism by which the PSD-95-based protein complex is trafficked to the postsynaptic site is unknown but presumably involves specific motor proteins. Here we demonstrate a direct interaction between the PSD-95-associated protein guanylate kinase domain-associated protein (GKAP) and dynein light chain (DLC), a light chain subunit shared by myosin-V (an actin-based motor) and cytoplasmic dynein (a microtubule-based motor). A yeast two-hybrid screen with GKAP isolated DLC2, a novel protein 93% identical to the previously cloned 8 kDa dynein light chain (DLC1). A complex containing PSD-95, GKAP, DLC, and myosin-V can be immunoprecipitated from rat brain extracts. DLC colocalizes with PSD-95 and F-actin in dendritic spines of cultured neurons and is enriched in biochemical purifications of PSD. Immunogold electron microscopy reveals a concentration of DLC in the postsynaptic compartment of asymmetric synapses of brain in which it is associated with the PSD and the spine apparatus. We discuss the possibility that the GKAP/DLC interaction may be involved in trafficking of the PSD-95 complex by motor proteins.
- Inatome R et al.
- Identification of CRAM, a novel unc-33 gene family protein that associates with CRMP3 and protein-tyrosine kinase(s) in the developing rat brain.
- J Biol Chem. 2000; 275: 27291-302
- Display abstract
Four members of collapsin response mediator proteins (CRMPs) are thought to be involved in the semaphorin-induced growth cone collapse during neural development. Here we report the identification of a novel CRMP3-associated protein, designated CRAM for CRMP3-associated molecule, that belongs to the unc-33 gene family. The deduced amino acid sequence reveals that the CRAM gene encodes a protein of 563 amino acids, shows 57% identity with dihydropyrimidinase, and shows 50-51% identity with CRMPs. CRAM appears to form a large complex composed of CRMP3 and other unidentified proteins in vivo. Indeed, CRAM physically associates with CRMP3 when co-expressed in COS-7 cells. The expression of CRAM is brain-specific, is high in fetal and neonatal rat brain, and decreases to very low levels in adult brain. Moreover, CRAM expression is up-regulated during neuronal differentiation of embryonal carcinoma P19 and PC12 cells. Finally, immunoprecipitation analysis of rat brain extracts shows that CRAM is co-immunoprecipitated with proteins that contain protein-tyrosine kinase activity. Taken together, our results suggest that CRAM, which interacts with CRMP3 and protein-tyrosine kinase(s), is a new member of an emerging family of molecules that potentially mediate signals involved in the guidance and outgrowth of axons.
- Mino A, Ohtsuka T, Inoue E, Takai Y
- Membrane-associated guanylate kinase with inverted orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1) as a scaffolding molecule for Rap small G protein GDP/GTP exchange protein at tight junctions.
- Genes Cells. 2000; 5: 1009-16
- Display abstract
BACKGROUND: Membrane-associated guanylate kinase (MAGUK) with inverted orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1), is a member of the MAGUK family that has multiple PDZ domains and interacts with many transmembrane proteins, including receptors and channels, through these domains. MAGI-1/BAP1 is ubiquitously expressed and localized at tight junctions in epithelial cells. It is an isoform of the neurone-specific synaptic scaffolding molecule (S-SCAM), which is known to interact with NMDA receptors and neuroligins. We have recently found that S-SCAM also interacts with a signalling molecule, a GDP/GTP exchange protein (GEP) that is specific for Rap1 small G protein, Rap GEP, which has also recently been referred to as RA-GEF/PDZ-GEFI/CNras-GEF. In this study, we have examined whether MAGI-1/BAP1 also interacts with and serves as a scaffolding molecule for Rap GEP at tight junctions in epithelial cells. RESULTS: MAGI-1/BAP1 similarly interacted with Rap GEP in cell-free and intact cell systems. A Northern blot analysis revealed that Rap GEP was expressed in most tissues examined. However, neither postsynaptic density (PSD)-95/synapse-associated protein (SAP) 90 (another member of the MAGUK family) nor SAP97/human discs-large tumour suppressor gene product (another ubiquitously expressed MAGUK localizing to adherens junctions in epithelial cells and the isoform of PSD-95/SAP90) interacted with Rap GEP. CONCLUSION: These results indicate that MAGI-1/BAP1 serves as a scaffolding molecule for Rap GEP at tight junctions in epithelial cells.
- Wu Y et al.
- Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase.
- J Biol Chem. 2000; 275: 21477-85
- Display abstract
PTEN/MMAC is a phosphatase that is mutated in multiple human tumors. PTEN/MMAC dephosphorylates 3-phosphorylated phosphatidylinositol phosphates that activate AKT/protein kinase B (PKB) kinase activity. AKT/PKB is implicated in the inhibition of apoptosis, and cell lines and tumors with mutated PTEN/MMAC show increased AKT/PKB kinase activity and resistance to apoptosis. PTEN/MMAC contains a PDZ domain-binding site, and we show here that the phosphatase binds to a PDZ domain of membrane-associated guanylate kinase with inverted orientation (MAGI) 3, a novel inverted membrane-associated guanylate kinase that localizes to epithelial cell tight junctions. Importantly, MAGI3 and PTEN/MMAC cooperate to modulate the kinase activity of AKT/PKB. These data suggest that MAGI3 allows for the juxtaposition of PTEN/MMAC to phospholipid signaling pathways involved with cell survival.
- Craven SE, Bredt DS
- Synaptic targeting of the postsynaptic density protein PSD-95 mediated by a tyrosine-based trafficking signal.
- J Biol Chem. 2000; 275: 20045-51
- Display abstract
Synaptic function requires proper localization of proteins at synaptic sites. Targeting of the postsynaptic density protein 95 (PSD-95) relies on multiple signals within the protein, including twelve C-terminal amino acids. We now show that this C-terminal targeting domain of PSD-95 mediates postsynaptic localization through a short tyrosine-based motif followed by a pair of hydrophobic amino acids. Consistent with a role in cellular trafficking, the tyrosine motif resembles the canonical motif for interactions with clathrin adaptor proteins. In fact, we find that the C-terminal targeting domain of PSD-95 is sufficient to mediate clathrin-dependent endocytosis when appended to a transmembrane protein. Furthermore, systematic mutagenesis reveals that endocytosis mediated by this domain depends on both the tyrosine motif and the dihydrophobic amino acid pair. Thus, postsynaptic targeting of PSD-95 requires a tyrosine-based signal that can mediate clathrin-coated vesicle formation.
- Tiffany AM, Manganas LN, Kim E, Hsueh YP, Sheng M, Trimmer JS
- PSD-95 and SAP97 exhibit distinct mechanisms for regulating K(+) channel surface expression and clustering.
- J Cell Biol. 2000; 148: 147-58
- Display abstract
Mechanisms of ion channel clustering by cytoplasmic membrane-associated guanylate kinases such as postsynaptic density 95 (PSD-95) and synapse-associated protein 97 (SAP97) are poorly understood. Here, we investigated the interaction of PSD-95 and SAP97 with voltage-gated or Kv K(+) channels. Using Kv channels with different surface expression properties, we found that clustering by PSD-95 depended on channel cell surface expression. Moreover, PSD-95-induced clusters of Kv1 K(+) channels were present on the cell surface. This was most dramatically demonstrated for Kv1.2 K(+) channels, where surface expression and clustering by PSD-95 were coincidentally promoted by coexpression with cytoplasmic Kvbeta subunits. Consistent with a mechanism of plasma membrane channel-PSD-95 binding, coexpression with PSD-95 did not affect the intrinsic surface expression characteristics of the different Kv channels. In contrast, the interaction of Kv1 channels with SAP97 was independent of Kv1 surface expression, occurred intracellularly, and prevented further biosynthetic trafficking of Kv1 channels. As such, SAP97 binding caused an intracellular accumulation of each Kv1 channel tested, through the accretion of SAP97 channel clusters in large (3-5 microm) ER-derived intracellular membrane vesicles. Together, these data show that ion channel clustering by PSD-95 and SAP97 occurs by distinct mechanisms, and suggests that these channel-clustering proteins may play diverse roles in regulating the abundance and distribution of channels at synapses and other neuronal membrane specializations.
- Thomas U et al.
- Synaptic targeting and localization of discs-large is a stepwise process controlled by different domains of the protein.
- Curr Biol. 2000; 10: 1108-17
- Display abstract
BACKGROUND: Membrane-associated guanylate kinases (MAGUKs) assemble ion channels, cell-adhesion molecules and components of second messenger cascades into synapses, and are therefore potentially important for co-ordinating synaptic strength and structure. Here, we have examined the targeting of the Drosophila MAGUK Discs-large (DLG) to larval neuromuscular junctions. RESULTS: During development, DLG was first found associated with the muscle subcortical compartment and plasma membrane, and later was recruited to the postsynaptic membrane. Using a transgenic approach, we studied how mutations in various domains of the DLGprotein affect DLG targeting. Deletion of the HOOK region-the region between the Src homology 3 (SH3) domain and the guanylate-kinase-like (GUK) domain-prevented association of DLG with the subcortical network and rendered the protein largely diffuse. Loss of the first two PDZ domains led to the formation of large clusters throughout the plasma membrane, with scant targeting to the neuromuscular junction. Proper trafficking of DLG missing the GUK domain depended on the presence of endogenous DLG. CONCLUSIONS: Postsynaptic targeting of DLG requires a HOOK-dependent association with extrasynaptic compartments, and interactions mediated by the first two PDZ domains. The GUK domain routes DLG between compartments, possibly by interacting with recently identified cytoskeletal-binding partners.
- Yao I, Ohtsuka T, Kawabe H, Matsuura Y, Takai Y, Hata Y
- Association of membrane-associated guanylate kinase-interacting protein-1 with Raf-1.
- Biochem Biophys Res Commun. 2000; 270: 538-42
- Display abstract
Membrane-associated guanylate kinase-interacting protein (MAGUIN)-1 was identified as a protein interacting with synaptic scaffolding molecule (S-SCAM) and postsynaptic density (PSD)-95/synapse-associated protein (SAP)90. MAGUIN-1 has a chimerical molecular structure composed of one sterile alpha motif, one PSD-95/Dlg-A/ZO-1 (PDZ), and one pleckstrin homology (PH) domain, and interacts with the PDZ domains of S-SCAM and PSD-95/SAP90 via its carboxyl-terminal PDZ-binding motif. MAGUIN-1 is considered as a mammalian homologue of Drosophila CNK, which is a Raf-interacting protein implicated in the regulation of eye development. Here we have tested whether MAGUIN-1 interacts directly with Raf-1. MAGUIN-1 and Raf-1 were coimmunoprecipitated from rat brain. MAGUIN-1 binds to the kinase domain of Raf-1, and Raf-1 binds to the middle region of MAGUIN-1 containing the PH domain. However, in contrast to the dominant active mutant of Ki-Ras, which interacts with Raf-1, recruits it to the plasma membrane from the cytosol, and activates it, MAGUIN-1 neither activates Raf-1 nor recruits it to the plasma membrane. MAGUIN-1 may link Raf-1 to components of synapses assembled by PSD-95/SAP90 and S-SCAM.
- Shin H, Hsueh YP, Yang FC, Kim E, Sheng M
- An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by postsynaptic density-95/SAP90.
- J Neurosci. 2000; 20: 3580-7
- Display abstract
Members of the postsynaptic density-95 (PSD-95)/SAP90 family of membrane-associated guanylate kinase (MAGUK) proteins function as multimodular scaffolds that organize protein-signaling complexes at neuronal synapses. MAGUK proteins contain PDZ, Src homology 3 (SH3), and guanylate kinase (GK)-like domains, all of which can function as sites for specific protein-protein interactions. We report here a direct protein-protein interaction between the SH3 domain and the GK region in the PSD-95 family of MAGUKs. The SH3 domain of the PSD-95 family appears to have an atypical binding specificity, because the classical SH3 binding (-P-X-X-P-) motif is absent from the GK domain. Although SH3-GK binding can occur in either an intramolecular or intermolecular manner, the intramolecular mode is preferred, possibly because of additional tertiary interactions available when the SH3 and GK domains are adjacent in the same polypeptide. Mutations disrupting the intramolecular SH3-GK interaction do not interfere with PSD-95 association with the K(+) channel Kv1.4 or with the GK domain-binding protein GKAP. The same mutations, however, inhibit the clustering of Kv1.4 by PSD-95, suggesting that the intramolecular SH3-GK interaction may modulate the clustering activity of PSD-95.
- Tobaben S, Sudhof TC, Stahl B
- The G protein-coupled receptor CL1 interacts directly with proteins of the Shank family.
- J Biol Chem. 2000; 275: 36204-10
- Display abstract
PDZ domains play a pivotal role in the synaptic localization of ion channels, receptors, signaling enzymes, and cell adhesion molecules. These domains mediate protein-protein interactions via the recognition of a conserved sequence motif at the extreme C terminus of their target proteins. By means of a yeast two-hybrid screen using the C terminus of the G protein-coupled alpha-latrotoxin receptor CL1 as bait, three PDZ domain proteins of the Shank family were identified. These proteins belong to a single protein family characterized by a common domain organization. The PDZ domain is highly conserved among the family members, significantly different from other known PDZ domains, and specifically binds to the C terminus of CL1. Shank1 and CL1 are expressed primarily in brain, and both proteins co-enrich in the postsynaptic density. Furthermore, Shank1 induces a clustering of CL1 in transfected cells, strongly supporting an interaction of both proteins in vivo.
- Hibino H et al.
- Anchoring proteins confer G protein sensitivity to an inward-rectifier K(+) channel through the GK domain.
- EMBO J. 2000; 19: 78-83
- Display abstract
Anchoring proteins cluster receptors and ion channels at postsynaptic membranes in the brain. They also act as scaffolds for intracellular signaling molecules including synGAP and NO synthase. Here we report a new function for intracellular anchoring proteins: the regulation of synaptic ion channel function. A neuronal G protein-gated inwardly rectifying K(+) channel, Kir3.2c, can not be activated either by M(2)-muscarinic receptor stimulation or by G(betagamma) overexpression. When coexpressed with SAP97, a member of the PSD/SAP anchoring protein family, the channel became sensitive to G protein stimulation. Although the C-terminus of Kir3. 2c bound to the second PDZ domain of SAP97, functional analyses revealed that the guanylate kinase (GK) domain of SAP97 is crucial for sensitization of the Kir3.2c channel to G protein stimulation. Furthermore, SAPAP1/GKAP, which binds specifically to the GK domain of membrane-associated guanylate kinases, prevented the SAP97-induced sensitization. The function of a synaptic ion channel can therefore be controlled by a network of various intracellular proteins.
- Firestein BL et al.
- Cypin: a cytosolic regulator of PSD-95 postsynaptic targeting.
- Neuron. 1999; 24: 659-72
- Display abstract
Postsynaptic density 95 (PSD-95/SAP-90) is a membrane associated guanylate kinase (GK) PDZ protein that scaffolds glutamate receptors and associated signaling networks at excitatory synapses. Affinity chromatography identifies cypin as a major PSD-95-binding protein in brain extracts. Cypin is homologous to a family of hydrolytic bacterial enzymes and shares some similarity with collapsin response mediator protein (CRMP), a cytoplasmic mediator of semaphorin III signalling. Cypin is discretely expressed in neurons and is polarized to basal membranes in intestinal epithelial cells. Overexpression of cypin in hippocampal neurons specifically perturbs postsynaptic trafficking of PSD-95 and SAP-102, an effect not produced by overexpression of other PDZ ligands. In fact, PSD-95 can induce postsynaptic clustering of an otherwise diffusely localized K+ channel, Kv1.4. By regulating postsynaptic protein sorting, cypin may influence synaptic development and plasticity.
- Yao I et al.
- MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein.
- J Biol Chem. 1999; 274: 11889-96
- Display abstract
Postsynaptic density (PSD)-95/Synapse-associated protein (SAP) 90 and synaptic scaffolding molecule (S-SCAM) are neuronal membrane-associated guanylate kinases. Because PSD-95/SAP90 and S-SCAM function as synaptic scaffolding proteins, identification of ligands for these proteins is important to elucidate the structure of synaptic junctions. Here, we report a novel protein interacting with the PDZ domains of PSD-95/SAP90 and S-SCAM and named it MAGUIN-1 (membrane-associated guanylate kinase-interacting protein-1). MAGUIN-1 has one sterile alpha motif, one PDZ, and one plekstrin homology domain. MAGUIN-1 is localized at the plasma membrane via the plekstrin homology domain and the C-terminal region and interacts with PSD-95/SAP90 and S-SCAM via a C-terminal PDZ domain-binding motif. MAGUIN-1 has a short isoform, MAGUIN-2, which lacks a PDZ domain-binding motif. MAGUINs are expressed in neurons and localized in the cell body and neurites and are coimmunoprecipitated with PSD-95/SAP90 and S-SCAM from rat crude synaptosome. MAGUIN-1 may play an important role with PSD-95/SAP90 and S-SCAM to assemble the components of synaptic junctions.
- Yao I et al.
- Synamon, a novel neuronal protein interacting with synapse-associated protein 90/postsynaptic density-95-associated protein.
- J Biol Chem. 1999; 274: 27463-6
- Display abstract
Guanylate kinase-associated protein (GKAP)/SAP90/PSD-95-associated protein (SAPAP)/DLG-associated protein (DAP) is a protein of the postsynaptic density (PSD), and binds to the guanylate kinase domain of PSD-95/synapse-associated protein (SAP) 90 and synaptic scaffolding molecule. GKAP/SAPAP/DAP recruits PSD-95/SAP90 and its interacting protein, brain-enriched guanylate kinase-interacting protein, into the Triton X-100-insoluble fraction in transfected cells, suggesting that GKAP/SAPAP/DAP may link several PSD components to the Triton X-100-insoluble structures in the PSD. We have identified here a novel neuronal GKAP/SAPAP/DAP-binding protein and named it synamon. Synamon has seven ankyrin repeats at the NH(2) terminus followed by one src homology 3 domain and one PSD-95/Dlg-A/ZO-1 domain, and several proline-rich regions at the carboxyl terminus. Synamon interacts with the COOH-terminal region of GKAP/SAPAP/DAP via the middle region containing a PSD-95/Dlg-A/ZO-1 domain. Synamon was coimmunoprecipitated with SAPAP from rat crude synaptosomes and colocalized with SAPAP in primary cultured rat hippocampal neurons. Because synamon is composed of various protein-interacting modules, it may also interact with proteins other than GKAP/SAPAP/DAP to organize the architecture of the PSD.
- Maximov A, Sudhof TC, Bezprozvanny I
- Association of neuronal calcium channels with modular adaptor proteins.
- J Biol Chem. 1999; 274: 24453-6
- Display abstract
Presynaptic voltage-gated calcium (Ca(2+)) channels mediate Ca(2+) influx into the presynaptic terminal that triggers synaptic vesicle fusion and neurotransmitter release. The immediate proximity of Ca(2+) channels to the synaptic vesicle release apparatus is critical for rapid and efficient synaptic transmission. In a series of biochemical experiments, we demonstrate a specific association of the cytosolic carboxyl terminus of the N-type Ca(2+) channel pore-forming alpha(1B) subunit with the modular adaptor proteins Mint1 and CASK. The carboxyl termini of alpha(1B) bind to the first PDZ domain of Mint1 (Mint1-1). The proline-rich region present in the carboxyl termini of alpha(1B) binds to the SH3 domain of CASK. Mint1-1 is specific for the E/D-X-W-C/S-COOH consensus, which defines a novel class of PDZ domains (class III). The Mint1-1 PDZ domain-binding motif is present only in the "long" carboxyl-terminal splice variants of N-type (alpha(1B)) and P/Q-type (alpha(1A)) Ca(2+) channels, but not in R-type (alpha(1E)) or L-type (alpha(1C)) Ca(2+) channels. Our results directly link presynaptic Ca(2+) channels to a macromolecular complex formed by modular adaptor proteins at synaptic junction and advance our understanding of coupling between cell adhesion and synaptic vesicle exocytosis.
- Boeckers TM et al.
- Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density.
- J Neurosci. 1999; 19: 6506-18
- Display abstract
The postsynaptic density (PSD) is crucially involved in the structural and functional organization of the postsynaptic neurotransmitter reception apparatus. Using antisera against rat brain synaptic junctional protein preparations, we isolated cDNAs coding for proline-rich synapse-associated protein-1 (ProSAP1), a PDZ-domain protein. This protein was found to be identical to the recently described cortactin-binding protein-1 (CortBP1). Homology screening identified a related protein, ProSAP2. Specific antisera raised against a C-terminal fusion construct and a central part of ProSAP1 detect a cluster of immunoreactive bands of 180 kDa in the particulate fraction of rat brain homogenates that copurify with the PSD fraction. Transcripts and immunoreactivity are widely distributed in the brain and are upregulated during the period of synapse formation in the brain. In addition, two short N-terminal insertions are detected; they are differentially regulated during brain development. Confocal microscopy of hippocampal neurons showed that ProSAP1 is predominantly localized in synapses, and immunoelectron microscopy in situ revealed a strong association with PSDs of hippocampal excitatory synapses. The accumulation of ProSAP1 at synaptic structures was analyzed in the developing cerebral cortex. During early postnatal development, strong immunoreactivity is detectable in neurites and somata, whereas from postnatal day 10 (P10) onward a punctate staining is observed. At the ultrastructural level, the immunoreactivity accumulates at developing PSDs starting from P8. Both interaction with the actin-binding protein cortactin and early appearance at postsynaptic sites suggest that ProSAP1/CortBP1 may be involved in the assembly of the PSD during neuronal differentiation.
- Borg JP et al.
- Molecular analysis of the X11-mLin-2/CASK complex in brain.
- J Neurosci. 1999; 19: 1307-16
- Display abstract
A heterotrimeric complex containing Lin-10/X11alpha, Lin-2/CASK, and Lin-7 is evolutionarily conserved from worms to mammals. In Caenorhabditis elegans, it localizes Let-23, a receptor tyrosine kinase, to the basolateral side of vulval epithelium, a step crucial for proper vulva development. In mammals, the complex may also participate in receptor targeting in neurons. Accordingly, phosphotyrosine binding (PTB) and postsynaptic density-95/Discs large/Zona Occludens-1 domains found in X11alpha and mLin-2/CASK bind to cell-surface proteins, including amyloid precursor protein, neurexins, and syndecans. In this paper, we have further analyzed the X11alpha-mLin-2/CASK association that is mediated by a novel protein-protein interaction. We show that the mLin-2/CASK calmodulin kinase II (CKII) domain directly binds to a 63 amino acids peptide located between the Munc-18-1 binding site and the PTB domain in X11alpha. Ca2+/calmodulin association with mLin-2/CASK does not modify the X11alpha-mLin-2 interaction. A region containing the mLin-2/CASK guanylate kinase domain also interacts with X11alpha but with a lower affinity than the CKII domain. Immunostaining of X11alpha in the brain shows that the protein is expressed in areas shown previously to be positive for mLin-2/CASK staining. Together, our data demonstrate that the X11alpha-mLin-2 complex contacts many partners, creating a macrocomplex suitable for receptor targeting at the neuronal plasma membrane.
- Ohtsuka T et al.
- nRap GEP: a novel neural GDP/GTP exchange protein for rap1 small G protein that interacts with synaptic scaffolding molecule (S-SCAM).
- Biochem Biophys Res Commun. 1999; 265: 38-44
- Display abstract
Synaptic scaffolding molecule (S-SCAM) has six PDZ domains through which it interacts with N-methyl-d-aspartate receptors and neuroligin at synaptic junctions. We isolated here a novel S-SCAM-binding protein. This protein has one PDZ, one Ras association, one Ras GDP/GTP exchange protein (Ras GEP) domain, and one C-terminal consensus motif for binding to PDZ domains. We named it nRap GEP (neural Rap GEP). nRap GEP moreover has an incomplete cyclic AMP (cAMP)-binding (CAB) domain. The domain organization of nRap GEP is similar to that of Epac/cAMP-guanine nucleotide exchange factor (GEF) I, except that Epac/cAMP-GEFI has complete CAB and Ras GEP domains but lacks the other two domains and the C-terminal motif. nRap GEP showed GEP activity for Rap1 but did not bind cAMP. nRap GEP was specifically expressed in rat brain. Immunohistochemical analysis revealed that nRap GEP and S-SCAM were localized at synaptic areas of the cerebellum. These results suggest that nRap GEP is a novel neural Rap1-specific GEP which is associated with S-SCAM.
- McGee AW, Bredt DS
- Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95.
- J Biol Chem. 1999; 274: 17431-6
- Display abstract
Postsynaptic density-95 (PSD-95/SAP-90) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins that assemble protein complexes at synapses and other cell junctions. MAGUKs comprise multiple protein-protein interaction motifs including PDZ, SH3 and guanylate kinase (GK) domains, and these binding sites mediate the scaffolding function of MAGUK proteins. Synaptic binding partners for the PDZ and GK domains of PSD-95 have been identified, but the role of the SH3 domain remains elusive. We now report that the SH3 domain of PSD-95 mediates a specific interaction with the GK domain. The GK domain lacks a poly-proline motif that typically binds to SH3 domains; instead, SH3/GK binding is a bi-domain interaction that requires both intact motifs. Although isolated SH3 and GK domains can bind in trans, experiments with intact PSD-95 molecules indicate that intramolecular SH3/GK binding dominates and prevents intermolecular associations. SH3/GK binding is conserved in the related Drosophila MAGUK protein DLG but is not detectable for Caenorhabditis elegans LIN-2. Many previously identified genetic mutations of MAGUKs in invertebrates occur in the SH3 or GK domains, and all of these mutations disrupt intramolecular SH3/GK binding.
- Fanning AS, Anderson JM
- Protein modules as organizers of membrane structure.
- Curr Opin Cell Biol. 1999; 11: 432-9
- Display abstract
Investigations conducted over the past 18 months have shed new light on how modular protein-binding domains, in particular PDZ domains, co-ordinate the assembly of functional plasma membrane domains. Members of the MAGUK (membrane-associated guanylate kinase) protein family, like PSD-95, use multiple domains to cluster ion channels, receptors, adhesion molecules and cytosolic signaling proteins at synapses, cellular junctions, and polarized membrane domains. Other PDZ proteins, like the Drosophila protein INAD and the epithelial Na(+)/H(+) regulatory factor (NHERF), organize cellular signaling by localizing transmembrane and cytosolic components to specific membrane domains and assembling these components into functional complexes. The organization of these proteins into discreet structures has functional consequences for downstream signaling.
- Boeckers TM et al.
- Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family.
- Biochem Biophys Res Commun. 1999; 264: 247-52
- Display abstract
We have recently isolated a novel proline-rich synapse-associated protein-1 (ProSAP1) that is highly enriched in postsynaptic density (PSD). A closely related multidomain protein, ProSAP2, shares a highly conserved PDZ (PSD-95/discs-large/ZO-1) domain (80% identity), a ppI domain that mediates the interaction with cortactin, and a C-terminal SAM (sterile alpha-motif) domain. In addition, ProSAP2 codes for five ankyrin repeats and a SH3 (Src homology 3) domain. Transcripts for both proteins are coexpressed in many regions of rat brain, but show a distinct expression pattern in the cerebellum. Using the PDZ domains of ProSAP1 and 2 as bait in the yeast two-hybrid system, we isolated several clones of the SAPAP/GKAP (SAP90/PSD-95-associated protein/guanylate kinase-associated protein) family. The association of the proteins was verified by coimmunoprecipitation and cotransfection in HEK cells. Therefore, proteins of the ProSAP family represent a novel link between SAP90/PSD-95 bound membrane receptors and the cytoskeleton at glutamatergic synapses of the central nervous system.
- Craven SE, El-Husseini AE, Bredt DS
- Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs.
- Neuron. 1999; 22: 497-509
- Display abstract
During synaptic development, proteins aggregate at specialized pre- and postsynaptic structures. Mechanisms that mediate protein clustering at these sites remain unknown. To investigate this process, we analyzed synaptic targeting of a postsynaptic density protein, PSD-95, by expressing green fluorescent protein- (GFP-) tagged PSD-95 in cultured hippocampal neurons. We find that postsynaptic clustering relies on three elements of PSD-95: N-terminal palmitoylation, the first two PDZ domains, and a C-terminal targeting motif. In contrast, disruptions of PDZ3, SH3, or guanylate kinase (GK) domains do not affect synaptic targeting. Palmitoylation is sufficient to target the diffusely expressed SAP-97 to synapses, and palmitoylation cannot be replaced with alternative membrane association motifs, suggesting that a specialized synaptic lipid environment mediates postsynaptic clustering. The requirements for PDZ domains and a C-terminal domain of PSD-95 indicate that protein-protein interactions cooperate with lipid interactions in synaptic targeting.
- Deguchi M et al.
- BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein.
- J Biol Chem. 1998; 273: 26269-72
- Display abstract
PSD-95/SAP90 is a synaptic membrane-associated guanylate kinase with three PDZ, one SH3, and one guanylate kinase (GK) domain. PSD-95/SAP90 binds various proteins through the PDZ domains and organizes synaptic junctions. PSD-95/SAP90 also interacts with the postsynaptic density (PSD) fraction-enriched protein, named SAPAP (also called GKAP and DAP), through the GK domain. SAPAP is Triton X-100-insoluble and recruits PSD-95/SAP90 into the Triton X-100-insoluble fraction in the transfected cells, suggesting that SAPAP may fix PSD-95/SAP90 to the PSD. Here we report a novel protein interacting with the GK domain of PSD-95/SAP90, BEGAIN. BEGAIN is specifically expressed in brain and enriched in the PSD fraction. BEGAIN is Triton X-100-soluble in the transfected cells but is recruited to the Triton X-100-insoluble fraction by SAPAP when coexpressed with PSD-95/SAP90. BEGAIN may be a novel PSD component associated with the core complex of PSD-95/SAP90 and SAPAP.
- Hirao K et al.
- A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins.
- J Biol Chem. 1998; 273: 21105-10
- Display abstract
At synaptic junctions, pre- and postsynaptic membranes are connected by cell adhesion and have distinct structures for specialized functions. The presynaptic membranes have a machinery for fast neurotransmitter release, and the postsynaptic membranes have clusters of neurotransmitter receptors. The molecular mechanism of the assembly of synaptic junctions is not yet clear. Pioneering studies identified postsynaptic density (PSD)-95/SAP90 as a prototypic synaptic scaffolding protein to maintain the structure of synaptic junctions. PSD-95/SAP90 belongs to a family of membrane-associated guanylate kinases and binds N-methyl-D-aspartate receptors, potassium channels, and neuroligins through the PDZ domains and GKAP/SAPAP/DAP through the guanylate kinase (GK) domain. We performed here a yeast two-hybrid screening for SAPAP-interacting molecules and identified a novel protein that has an inverse structure of membrane-associated guanylate kinases with an NH2-terminal GK-like domain followed by two WW and five PDZ domains. It binds SAPAP through the GK-like domain and NMDA receptors and neuroligins through the PDZ domains. We named this protein S-SCAM (synaptic scaffolding molecule) because S-SCAM may assemble receptors and cell adhesion proteins at synaptic junctions.
- Shiratsuchi T, Futamura M, Oda K, Nishimori H, Nakamura Y, Tokino T
- Cloning and characterization of BAI-associated protein 1: a PDZ domain-containing protein that interacts with BAI1.
- Biochem Biophys Res Commun. 1998; 247: 597-604
- Display abstract
Brain-specific angiogenesis inhibitor 1 (BAI1), which is a p53-target gene specifically expressed in brain, encodes a seven-span transmembrane protein. Using a two-hybrid system, we isolated a cDNA that encodes a protein, named BAP1 (BAI1-associated protein), which interacts with the cytoplasmic region of BAI1. BAP1 is a novel member of the MAGUK (membrane-associated guanylate kinase homologue) family; it possesses a guanylate kinase domain, WW domains, and multiple PDZ domains. Interaction between BAI1 and BAP1 was mediated by a QTEV motif in the carboxy-terminal region of BAI1 and PDZ domains of BAP1. By immunocytochemical analysis of COS-7 cells transfected with BAI1 and BAP1, both products were co-localized at the cytoplasmic membrane, especially at cell-cell junctions. Cells transfected with BAI1 formed filopodia-like cytoplasmic extensions. These results suggest that BAI1 and BAP1 might be involved in cell adhesion and signal transduction in brain.
- Kim JH, Liao D, Lau LF, Huganir RL
- SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family.
- Neuron. 1998; 20: 683-91
- Display abstract
The PSD-95/SAP90 family of proteins has recently been implicated in the organization of synaptic structure. Here, we describe the isolation of a novel Ras-GTPase activating protein, SynGAP, that interacts with the PDZ domains of PSD-95 and SAP102 in vitro and in vivo. SynGAP is selectively expressed in brain and is highly enriched at excitatory synapses, where it is present in a large macromolecular complex with PSD-95 and the NMDA receptor. SynGAP stimulates the GTPase activity of Ras, suggesting that it negatively regulates Ras activity at excitatory synapses. Ras signaling at the postsynaptic membrane may be involved in the modulation of excitatory synaptic transmission by NMDA receptors and neurotrophins. These results indicate that SynGAP may play an important role in the modulation of synaptic plasticity.
- Butz S, Okamoto M, Sudhof TC
- A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain.
- Cell. 1998; 94: 773-82
- Display abstract
We identify a complex of three proteins in brain that has the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion. The three proteins are: (1) CASK, a protein related to MAGUKs (membrane-associated guanylate kinases); (2) Mint1, a putative vesicular trafficking protein; and (3) Veli1, -2, and -3, vertebrate homologs of C. elegans LIN-7. CASK, Mint1, and Velis form a tight, salt-resistant complex that can be readily isolated. CASK, Mint1, and Velis contain PDZ domains in addition to other modules. However, no PDZ domains are involved in complex formation, leaving them free to recruit cell adhesion molecules, receptors, and channels to the complex. We propose that the tripartite complex acts as a nucleation site for the assembly of proteins involved in synaptic vesicle exocytosis and synaptic junctions.
- Chishti AH
- Function of p55 and its nonerythroid homologues.
- Curr Opin Hematol. 1998; 5: 116-21
- Display abstract
The human erythrocyte membrane has served as a model for elucidating novel protein-protein and protein-membrane interactions that have broad implications in many nonerythroid cells. A detailed analysis of erythrocyte membrane polypeptides that migrate in the region of band 4.9 led to the cloning and characterization of p55 phosphoprotein. Subsequent studies established that the p55 protein is an obligate component of the protein 4.1-glycophorin C complex, which regulates the stability and mechanical properties of the erythrocyte plasma membrane. p55 is a member of a growing family of signaling and cytoskeletal proteins termed membrane-associated guanylate kinase homologues (MAGUKs). MAGUKs are multidomain proteins consisting of either a single or three copies of the PDZ (PSD-95/Discs large/ZO-1) domain, an SH3 motif, and a guanylate kinaselike domain. Recent studies have implicated MAGUKs in the clustering of ion channels, organization of cytoskeletal elements, cell signaling events, and regulation of cell proliferation and tumor-suppression pathways. The purpose of this review is to summarize recent developments concerning the characterization of two human MAGUKs, erythrocyte p55, and lymphocyte hDIg.
- Niethammer M et al.
- CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90.
- Neuron. 1998; 20: 693-707
- Display abstract
The synaptic protein PSD-95/SAP90 binds to and clusters a variety of membrane proteins via its two N-terminal PDZ domains. We report a novel protein, CRIPT, which is highly conserved from mammals to plants and binds selectively to the third PDZ domain (PDZ3) of PSD-95 via its C terminus. While conforming to the consensus PDZ-binding C-terminal sequence (X-S/T-X-V-COOH), residues at the -1 position and upstream of the last four amino acids of CRIPT determine its specificity for PDZ3. In heterologous cells, CRIPT causes a redistribution of PSD-95 to microtubules. In brain, CRIPT colocalizes with PSD-95 in the postsynaptic density and can be coimmunoprecipitated with PSD-95 and tubulin. These findings suggest that CRIPT may regulate PSD-95 interaction with a tubulin-based cytoskeleton in excitatory synapses.
- Dobrosotskaya I, Guy RK, James GL
- MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains.
- J Biol Chem. 1997; 272: 31589-97
- Display abstract
Membrane-associated guanylate kinase (MAGUK) proteins participate in the assembly of multiprotein complexes on the inner surface of the plasma membrane at regions of cell-cell contact. MAGUKs are characterized by three types of protein-protein interaction modules: the PDZ domain, the Src homology 3 (SH3) domain, and the guanylate kinase (GuK) domain. The arrangement of these domains is conserved in all previously known MAGUKs: either one or three PDZ domains in the NH2-terminal half, followed by the SH3 domain, followed by a COOH-terminal GuK domain. In this report, we describe the cDNA cloning and subcellular distribution of MAGI-1, a MAGUK with three unique structural features: 1) the GuK domain is at the NH2 terminus, 2) the SH3 domain is replaced by two WW domains, and 3) it contains five PDZ domains. MAGI-1 mRNA was detected in several adult mouse tissues. Sequence analysis of overlapping cDNAs revealed the existence of three splice variants that are predicted to encode MAGI-1 proteins with different COOH termini. The longest variant, MAGI-1c, contains three bipartite nuclear localization signals in its unique COOH-terminal sequence and was found predominantly in the nucleus of Madin-Darby canine kidney cells. A shorter form lacking these signals was found primarily in membrane and cytoplasmic fractions. This distribution, which is reminiscent of that seen for the tight junction protein ZO-1, suggests that MAGI-1 may participate in the transmission of regulatory signals from the cell surface to the nucleus.
- Dimitratos SD, Woods DF, Bryant PJ
- Camguk, Lin-2, and CASK: novel membrane-associated guanylate kinase homologs that also contain CaM kinase domains.
- Mech Dev. 1997; 63: 127-30
- Display abstract
MAGUKs (membrane-associated guanylate kinase homologs) are proteins involved in cell junction organization, tumor suppression, and signalling. Their structure includes one or three copies of a DHR or PDZ domain (discs-large homologous region or PSD-95/SAP90, discs-large ZO-1 homologous domain), an SH3 domain, and a guanylate kinase domain. MAGUKs were classified into two subfamilies: Dlg-like with three DHR/PDZ domains and p55-like with a single DHR/PDZ domain. There is now a new subfamily whose members have a novel domain structure: a calcium/calmodulin-dependent protein kinase domain in the N-terminus as well as the DHR/PDZ, SH3 and GUK domains in the C-terminus. These new MAGUKs may regulate transmembrane molecules that bind calcium, calmodulin, or nucleotides, camguk (cmg) is a Drosophila member of this novel MAGUK subfamily; we report its sequence and domain structure.
- Hsueh YP, Kim E, Sheng M
- Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95.
- Neuron. 1997; 18: 803-14
- Display abstract
The PSD-95/SAP90 family of PDZ-containing proteins is directly involved in the clustering of specific ion channels at synapses. We report that channel clustering depends on a conserved N-terminal domain of PSD-95 that mediates multimerization and disulfide linkage of PSD-95 protomers. This N-terminal multimerization domain confers channel clustering activity on a single PDZ domain. Thus, channel clustering depends on aggregation of PDZ domains achieved by head-to-head multimerization of PSD-95, rather than by concatenation of PDZ domains in PSD-95 monomers. This mechanism predicts that PSD-95 can organize heterogeneous membrane protein clusters via differential binding specificities of its three PDZ domains. PSD-95 and its relative chapsyn-110 exist as disulfide-linked complexes in rat brain, consistent with head-to-head multimerization of these proteins in vivo.
- Naisbitt S et al.
- Characterization of guanylate kinase-associated protein, a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated protein 90.
- J Neurosci. 1997; 17: 5687-96
- Display abstract
The structure of central synapses is poorly understood at the molecular level. A recent advance came with the identification of the postsynaptic density-95 (PSD-95)/synapse-associated protein 90 family of proteins as important mediators of the synaptic clustering of certain classes of ion channels. By yeast two-hybrid screening, a novel protein termed guanylate kinase-associated protein (GKAP) has been isolated that binds to the GK-like domain of PSD-95 (). Here we present a detailed characterization of GKAP expression in the rat brain and report the cloning of a novel GKAP splice variant. By Northern blot, GKAP mRNAs (4, 6.5, and 8 kB) are expressed predominantly in the rat brain. By in situ hybridization, GKAP is expressed widely in neurons of cortex and hippocampus and in the Purkinje and granule cells of the cerebellum. On brain immunoblots, two prominent bands of 95 and 130 kDa are detected that correspond to products of short and long N-terminal splice variants of GKAP. Two independent GKAP antibodies label somatodendritic puncta in neocortical and hippocampal neurons in a pattern consistent with synaptic elements. Immunogold electron microscopy reveals GKAP to be predominantly postsynaptic and present at asymmetric synapses and in dendritic spines. The distribution of GKAP immunogold particles is uniform in the lateral plane of the PSD but peaks in the perpendicular axis approximately 20 nm from the postsynaptic membrane. In cultured hippocampal neurons GKAP immunoreactive puncta colocalize with the AMPA receptor subunit Glu receptor 1 but not with the GABAA receptor subunits beta2 and beta3. Thus GKAP is a widely expressed neuronal protein localized specifically in the PSD of glutamatergic synapses, consistent with its direct interaction with PSD-95 family proteins.
- Kawashima N, Takamiya K, Sun J, Kitabatake A, Sobue K
- Differential expression of isoforms of PSD-95 binding protein (GKAP/SAPAP1) during rat brain development.
- FEBS Lett. 1997; 418: 301-4
- Display abstract
PSD-95/SAP90, which binds to the C-terminus of NMDA receptor and Shaker-type potassium channel, is one of the major postsynaptic density proteins. Recently, novel classes of proteins interacting with the guanylate kinase domain of PSD-95 have been identified, guanylate kinase-associated protein (GKAP) and SAP90/PSD-95-associated proteins (SAPAPs). Here we report the isolation of new isoforms of PSD-95 binding protein (GKAP/SAPAP1) using the yeast two-hybrid system. The isolated protein directly interacts with the guanylate kinase domain of PSD-95. Northern blot analyses revealed that the expression of these isoforms containing distinct N-terminal sequences is differentially regulated during brain development. The present findings suggest that each isoform of the PSD-95 binding protein is differentially expressed in a development-dependent manner and may be involved in the complex formation of PSD-95 and channel/receptors at the postsynaptic density.
- Takeuchi M, Hata Y, Hirao K, Toyoda A, Irie M, Takai Y
- SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density.
- J Biol Chem. 1997; 272: 11943-51
- Display abstract
PSD-95/SAP90 is a member of membrane-associated guanylate kinases localized at postsynaptic density (PSD) in neuronal cells. Membrane-associated guanylate kinases are a family of signaling molecules expressed at various submembrane domains which have the PDZ (DHR) domains, the SH3 domain, and the guanylate kinase domain. PSD-95/SAP90 interacts with N-methyl-D-aspartate receptors 2A/B, Shaker-type potassium channels, and brain nitric oxide synthase through the PDZ (DHR) domains and clusters these molecules at synaptic junctions. However, neither the function of the SH3 domain or the guanylate kinase domain of PSD-95/SAP90, nor the protein interacting with these domains has been identified. We have isolated here a novel protein family consisting of at least four members which specifically interact with PSD-95/SAP90 and its related proteins through the guanylate kinase domain, and named these proteins SAPAPs (SAP90/PSD-95-Associated Proteins). SAPAPs are specifically expressed in neuronal cells and enriched in the PSD fraction. SAPAPs induce the enrichment of PSD-95/SAP90 to the plasma membrane in transfected cells. Thus, SAPAPs may have a potential activity to maintain the structure of PSD by concentrating its components to the membrane area.
- Kim E, Sheng M
- Differential K+ channel clustering activity of PSD-95 and SAP97, two related membrane-associated putative guanylate kinases.
- Neuropharmacology. 1996; 35: 993-1000
- Display abstract
The molecular mechanisms underlying the clustering and localization of K+ channels in specific microdomains on the neuronal surface are largely unknown. The Shaker subclass of voltage-gated K+ channel alpha-subunits interact through their cytoplasmic C-terminus with a family of membrane-associated putative guanylate kinases, including PSD-95 and SAP97. We show here that heterologous coexpression of either sap97 or PSD-95 with various Shaker-type subunits results in the coclustering of these proteins with the K+ channels. Mutation of the C-terminal sequence (-ETDV) of the Shaker subunit Kv1.4 abolishes its binding to, and prevents its clustering with, SAP97 and PSD-95. Whereas PSD-95 induces plaque-like clusters of K+ channels at the cell surface; however, SAP97 coexpression results in the formation of large round intracellular aggregates into which both SAP97 and the K+ channel proteins are colocalized. The efficiency of surface clustering by PSD-95 varies with different Shaker subunits: striking Kv1.4 clustering occurs in > 60% of cotransfected cells, whereas Kv1.1 and Kv1.2 form convincing clusters with PSD-95 only in approximately 10% of cells.
- Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M
- Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases.
- Nature. 1995; 378: 85-8
- Display abstract
ANCHORING of ion channels at specific subcellular sites is critical for neuronal signalling, but the mechanisms underlying channel localization and clustering are largely unknown (reviewed in ref. 1). Voltage-gated K+ channels are concentrated in various neuronal domains, including presynaptic terminals, nodes of Ranvier and dendrites, where they regulate local membrane excitability. Here we present functional and biochemical evidence that cell-surface clustering of Shaker-subfamily K+ channels is mediated by the PSD-95 family of membrane-associated putative guanylate kinases, as a result of direct binding of the carboxy-terminal cytoplasmic tails to the K+ channel subunits to two PDZ (also known as GLGF or DHR) domains in the PSD-95 protein. The ability of PDZ domains to function as independent modules for protein-protein interaction, and their presence in other junction-associated molecules (such as ZO-1 (ref. 3) and syntrophin), suggest that PDZ-domain-containing polypeptides may be widely involved in the organization of proteins at sites of membrane specialization.
- Kistner U, Garner CC, Linial M
- Nucleotide binding by the synapse associated protein SAP90.
- FEBS Lett. 1995; 359: 159-63
- Display abstract
The rat synapse associated protein SAP90 is a member of a superfamily of potential guanylate kinases localized at cell-cell contact sites. This superfamily includes the synapse associated protein SAP97, a close relative of SAP90, the Drosophila tumor suppressor gene product dlg-Ap, the mammalian zonula occludens proteins ZO-1 and ZO-2 and the erythrocyte protein p55. Here we show that SAP90 specifically binds GMP in the micromolar range while binding to ATP, GDP and ADP is at a much lower affinity (10-25 mM), whether or not binding is detected for other guanine and adenine nucleotides. No guanylate kinase activity of SAP90 was detected under our experimental conditions. The importance of the GMP binding capacity per se and an evolutionary role for conserving of the guanylate kinase domain in this superfamily are discussed.
- Marfatia SM, Lue RA, Branton D, Chishti AH
- In vitro binding studies suggest a membrane-associated complex between erythroid p55, protein 4.1, and glycophorin C.
- J Biol Chem. 1994; 269: 8631-4
- Display abstract
p55 is a palmitoylated peripheral membrane phosphoprotein of human erythrocytes. Primary structure of p55 includes a single copy of the SH3 motif, a COOH-terminal guanylate kinase domain, and an NH2-terminal domain of unknown function. Although the function of p55 is not known, interest in this component has been heightened by its similarity to the Drosophila tumor suppressor discs-large (dlg). In this report we provide evidence for the direct association of p55 with the NH2-terminal 30-kDa domain of protein 4.1, a key component of the erythroid membrane skeleton. In addition, p55 also binds to the cytoplasmic domain of glycophorin C, a transmembrane protein of red blood cells. We also provide evidence demonstrating the direct association of the 30-kDa domain of protein 4.1 with the cytoplasmic domain of glycophorin C. Taken together, these results suggest the existence of a novel ternary complex at the erythroid plasma membrane involving protein 4.1, p55, and glycophorin C. Since isoforms of protein 4.1, p55, and glycophorin C are present in many non-erythroid cells, the binding interactions may be prototypical of similar associations that modulate cytoskeletal-membrane linkage of broad significance.