Secondary literature sources for Mre11_DNA_bind
The following references were automatically generated.
- Xie M et al.
- Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation.
- Nucleic Acids Res. 2015; 43: 960-72
- Display abstract
High-linear energy transfer ionizing radiation, derived from high charge (Z) and energy (E) (HZE) particles, induces clustered/complex DNA double-strand breaks (DSBs) that include small DNA fragments, which are not repaired by the non-homologous end-joining (NHEJ) pathway. The homologous recombination (HR) DNA repair pathway plays a major role in repairing DSBs induced by HZE particles. The Mre11 complex (Mre11/Rad50/NBS1)-mediated resection of DSB ends is a required step in preparing for DSB repair via the HR DNA repair pathway. Here we found that expression of Bcl2 results in decreased HR activity and retards the repair of DSBs induced by HZE particles (i.e. (56)iron and (28)silicon) by inhibiting Mre11 complex activity. Exposure of cells to (56)iron or (28)silicon promotes Bcl2 to interact with Mre11 via the BH1 and BH4 domains. Purified Bcl2 protein directly suppresses Mre11 complex-mediated DNA resection in vitro. Expression of Bcl2 reduces the ability of Mre11 to bind DNA following exposure of cells to HZE particles. Our findings suggest that, after cellular exposure to HZE particles, Bcl2 may inhibit Mre11 complex-mediated DNA resection leading to suppression of the HR-mediated DSB repair in surviving cells, which may potentially contribute to tumor development.
- Albrecht DW, Herdendorf TJ, Nelson SW
- Disruption of the bacteriophage T4 Mre11 dimer interface reveals a two-state mechanism for exonuclease activity.
- J Biol Chem. 2012; 287: 31371-81
- Display abstract
The Mre11-Rad50 (MR) complex is a central player in DNA repair and is implicated in the processing of DNA ends caused by double strand breaks. Recent crystal structures of the MR complex suggest that several conformational rearrangements occur during its ATP hydrolysis cycle. A comparison of the Mre11 dimer interface from these structures suggests that the interface is dynamic in nature and may adopt several different arrangements. To probe the functional significance of the Mre11 dimer interface, we have generated and characterized a dimer disruption Mre11 mutant (L101D-Mre11). Although L101D-Mre11 binds to Rad50 and dsDNA with affinity comparable with the wild-type enzyme, it does not activate the ATP hydrolysis activity of Rad50, suggesting that the allosteric communication between Mre11 and Rad50 has been interrupted. Additionally, the dsDNA exonuclease activity of the L101D-MR complex has been reduced by 10-fold under conditions where processive exonuclease activity is required. However, we unexpectedly found that under steady state conditions, the nuclease activity of the L101D-MR complex is significantly greater than that of the wild-type complex. Based on steady state and single-turnover nuclease assays, we have assigned the rate-determining step of the steady state nuclease reaction to be the productive assembly of the complex at the dsDNA end. Together, our data suggest that the Mre11 dimer interface adopts at least two different states during the exonuclease reaction.
- Das D et al.
- Crystal structure of the first eubacterial Mre11 nuclease reveals novel features that may discriminate substrates during DNA repair.
- J Mol Biol. 2010; 397: 647-63
- Display abstract
Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks. As X-ray structural information has been available only for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is an Mre11 endo/exonuclease (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only approximately 20%. However, they differ substantially in their DNA-specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA-specificity domain are not. The structural differences likely affect how Mre11 from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with the exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on single-stranded and double-stranded DNA substrates, respectively.
- Deriano L, Stracker TH, Baker A, Petrini JH, Roth DB
- Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates.
- Mol Cell. 2009; 34: 13-25
- Display abstract
Recent work has highlighted the importance of alternative, error-prone mechanisms for joining DNA double-strand breaks (DSBs) in mammalian cells. These noncanonical, nonhomologous end-joining (NHEJ) pathways threaten genomic stability but remain poorly characterized. The RAG postcleavage complex normally prevents V(D)J recombination-associated DSBs from accessing alternative NHEJ. Because the MRE11/RAD50/NBS1 complex localizes to RAG-mediated DSBs and possesses DNA end tethering, processing, and joining activities, we asked whether it plays a role in the mechanism of alternative NHEJ or participates in regulating access of DSBs to alternative repair pathways. We find that NBS1 is required for alternative NHEJ of hairpin coding ends, suppresses alternative NHEJ of signal ends, and promotes proper resolution of inversional recombination intermediates. These data demonstrate that the MRE11 complex functions at two distinct levels, regulating repair pathway choice (likely through enhancing the stability of DNA end complexes) and participating in alternative NHEJ of coding ends.
- Mukherjee S, LaFave MC, Sekelsky J
- DNA damage responses in Drosophila nbs mutants with reduced or altered NBS function.
- DNA Repair (Amst). 2009; 8: 803-12
- Display abstract
The MRN complex, composed of MRE11, RAD50 and NBS, plays important roles in responding to DNA double-strand breaks (DSBs). In metazoans, functional studies of genes encoding these proteins have been challenging because complete loss-of-function mutations are lethal at the organismal level and because NBS has multiple functions in DNA damage responses. To study functions of Drosophila NBS in DNA damage responses, we used a separation-of-function mutation that causes loss of the forkhead-associated (FHA) domain. Loss of the FHA domain resulted in hypersensitivity to ionizing radiation and defects in gap repair by homologous recombination, but had only a small effect on the DNA damage checkpoint response and did not impair DSB repair by end joining. We also found that heterozygosity for an nbs null mutation caused reduced gap repair and loss of the checkpoint response to low-dose irradiation. These findings shed light on possible sources of the cancer predisposition found in human carriers of NBN mutations.
- Rahal EA, Henricksen LA, Li Y, Turchi JJ, Pawelczak KS, Dixon K
- ATM mediates repression of DNA end-degradation in an ATP-dependent manner.
- DNA Repair (Amst). 2008; 7: 464-75
- Display abstract
Ataxia telangiectasia mutated (ATM) is a PI3-kinase-like kinase (PIKK) associated with DNA double-strand break (DSB) repair and cell cycle control. We have previously reported comparable efficiencies of DSB repair in nuclear extracts from both ATM deficient (A-T) and control (ATM+) cells; however, the repair products from the A-T nuclear extracts contained deletions encompassing longer stretches of DNA compared to controls. These deletions appeared to result from end-joining at sites of microhomology. These data suggest that ATM hinders error-prone repair pathways that depend on degradation of DNA ends at a break. Such degradation may account for the longer deletions we formerly observed in A-T cell extracts. To address this possibility we assessed the degradation of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in signal intensity from full-length products to shorter products in A-T nuclear extracts, and addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was both ATP-dependent and inhibited by the PIKK inhibitors wortmannin and caffeine. Addition of pre-phosphorylated ATM to an A-T nuclear extract in the presence of PIKK inhibitors was insufficient in repressing degradation, indicating that kinase activities are required. These results demonstrate a role for ATM in preventing the degradation of DNA ends possibly through repressing nucleases implicated in microhomology-mediated end-joining.
- Cahill D, Carney JP
- Dimerization of the Rad50 protein is independent of the conserved hook domain.
- Mutagenesis. 2007; 22: 269-74
- Display abstract
The Mre11 complex (Mre11-Rad50-Nbs1) is involved in a diverse array of DNA metabolic processes including the response to DNA double-strand breaks (DSBs). The structure of Rad50 plays a key role in the DNA-binding and end-bridging activity of the complex. An interesting feature within the central portion of the Rad50 protein is the Rad50 hook region that is defined by the highly conserved CXXC motif. The structure of the Pyrococcus furiosus Rad50 hook region revealed an intermolecular dimerization of Rad50 through the coordination of a zinc ion by the four cysteines. Biochemical and genetic analysis in Saccharomyces cerevisiae have shown that mutations in the conserved cysteines impact all functions of the Mre11 complex including interaction with Mre11, increased sensitivity to DSB inducing agents, telomere maintenance and intrachromosomal association. Mutations in the yeast hook domain can lead to increased chromosome fragmentation, suggesting that the hook domain of Rad50 is essential for the tethering of chromosome ends. In this study, we have examined the effects of mutating the key cysteine residues in the hook domain of human Rad50 (hRad50), focusing on the interactions Rad50 has with itself, Mre11 and DNA. Our results reveal that mutation of the conserved cysteine residues abrogates dimerization at the hook domain in hRad50; however, disrupting dimerization at this domain does not appear to impair the interaction of full-length hRad50 with itself and hMre11 or affect DNA-binding activity of the hMre11-Rad50 complex.
- Ashley T et al.
- Meiotic recombination and spatial proximity in the etiology of the recurrent t(11;22).
- Am J Hum Genet. 2006; 79: 524-38
- Display abstract
Although balanced translocations are among the most common human chromosomal aberrations, the constitutional t(11;22)(q23;q11) is the only known recurrent non-Robertsonian translocation. Evidence indicates that de novo formation of the t(11;22) occurs during meiosis. To test the hypothesis that spatial proximity of chromosomes 11 and 22 in meiotic prophase oocytes and spermatocytes plays a role in the rearrangement, the positions of the 11q23 and 22q11 translocation breakpoints were examined. Fluorescence in situ hybridization with use of DNA probes for these sites demonstrates that 11q23 is closer to 22q11 in meiosis than to a control at 6q26. Although chromosome 21p11, another control, often lies as close to 11q23 as does 22q11 during meiosis, chromosome 21 rarely rearranges with 11q23, and the DNA sequence of chromosome 21 appears to be less susceptible than 22q11 to double-strand breaks (DSBs). It has been suggested that the rearrangement recurs as a result of the palindromic AT-rich repeats at both 11q23 and 22q11, which extrude hairpin structures that are susceptible to DSBs. To determine whether the DSBs at these sites coincide with normal hotspots of meiotic recombination, immunocytochemical mapping of MLH1, a protein involved in crossing over, was employed. The results indicate that the translocation breakpoints do not coincide with recombination hotspots and therefore are unlikely to be the result of meiotic programmed DSBs, although MRE11 is likely to be involved. Previous analysis indicated that the DSBs appear to be repaired by a mechanism similar to nonhomologous end joining (NHEJ), although NHEJ is normally suppressed during meiosis. Taken together, these studies support the hypothesis that physical proximity between 11q23 and 22q11--but not typical meiotic recombinational activity in meiotic prophase--plays an important role in the generation of the constitutional t(11;22) rearrangement.
- Rodrigue A et al.
- Interplay between human DNA repair proteins at a unique double-strand break in vivo.
- EMBO J. 2006; 25: 222-31
- Display abstract
DNA repair by homologous recombination is essential for preserving genomic integrity. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) play important roles in this process. In this study, we show that human RAD51 interacts with RAD51C-XRCC3 or RAD51B-C-D-XRCC2. In addition to being critical for RAD51 focus formation, RAD51C localizes to DNA damage sites. Inhibition of RAD51C results in a decrease in cellular proliferation consistent with a role in repairing double-strand breaks (DSBs) that occur naturally. To monitor a single DNA repair event, we developed immunofluorescence and chromatin immunoprecipitation (ChIP) methods on human cells where a unique DSB can be created in vivo. Using this system, we observed a single focus of RAD51C, RAD51 and 53BP1, which colocalized with gamma-H2AX. ChIPs revealed that endogenous human RAD51, RAD51C, RAD51D, XRCC2, XRCC3 and MRE11 proteins are recruited in the S-G2 phase of the cell cycle, while Ku80 is recruited during G1. We propose that RAD51C ensures a tight regulation of RAD51 assembly during DSB repair and plays a direct role in repairing DSBs in vivo.
- Andrews CA, Clarke DJ
- MRX (Mre11/Rad50/Xrs2) mutants reveal dual intra-S-phase checkpoint systems in budding yeast.
- Cell Cycle. 2005; 4: 1073-7
- Display abstract
The intra-S-phase checkpoint is a signaling pathway that induces slow DNA replication in the presence of DNA damage. In humans, defects in this checkpoint pathway might account for phenotypes seen in autosomal recessive diseases including ataxia telangiectasia-like disorder and Nijmegen breakage syndrome, where MRN complex components,Mre11 and Nbs1, are mutated. Here we provide evidence that the equivalent budding yeast complex, MRX (Mre11/Rad50/Xrs2), is not required for the intra-S-phase checkpoint in response to DNA alkylation damage, but is required in the presence of double-stranded DNA breaks. These data indicate, at least in budding yeast, that alternate pathways enforce replication slowing depending on the particular DNA lesion.
- Yu J, Marshall K, Yamaguchi M, Haber JE, Weil CF
- Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae.
- Mol Cell Biol. 2004; 24: 1351-64
- Display abstract
The maize, cut-and-paste transposon Ac/Ds is mobile in Saccharomyces cerevisiae, and DNA sequences of repair products provide strong genetic evidence that hairpin intermediates form in host DNA during this transposition, similar to those formed for V(D)J coding joints in vertebrates. Both DNA strands must be broken for Ac/Ds to excise, suggesting that double-strand break (DSB) repair pathways should be involved in repair of excision sites. In the absence of homologous template, as expected, Ac excisions are repaired by nonhomologous end joining (NHEJ) that can involve microhomologies close to the broken ends. However, unlike repair of endonuclease-induced DSBs, repair of Ac excisions in the presence of homologous template occurs by gene conversion only about half the time, the remainder being NHEJ events. Analysis of transposition in mutant yeast suggests roles for the Mre11/Rad50 complex, SAE2, NEJ1, and the Ku complex in repair of excision sites. Separation-of-function alleles of MRE11 suggest that its endonuclease function is more important in this repair than either its exonuclease or Rad50-binding properties. In addition, the interstrand cross-link repair gene PSO2 plays a role in end joining hairpin ends that is not seen in repair of linearized plasmids and may be involved in positioning transposase cleavage at the transposon ends.
- Liu L, Usher M, Hu Y, Kmiec EB
- Nuclease activity of Saccharomyces cerevisiae Mre11 functions in targeted nucleotide alteration.
- Appl Environ Microbiol. 2003; 69: 6216-24
- Display abstract
Oligonucleotides can be used to direct site-specific changes in genomic DNA through a process in which mismatched base pairs in the oligonucleotide and the target DNA are created. The mechanism by which these complexes are developed and resolved is being studied by using Saccharomyces cerevisiae as a model system. Genetic analyses have revealed that in all likelihood the reaction occurs in two phases: DNA pairing and DNA repair. While the former phase involves strand assimilation, the latter phase likely involves an endonucleolytic processing step that leads to joint resolution. In this study, we established the importance of a functioning MRE11 gene in the overall reaction, as yeast strains deficient in MRE11 exhibited severely reduced activity. The activity could be rescued by complementation with wild-type MRE11 genes but not with MRE11 alleles lacking the nuclease function. Taken together, the data suggest that Mre11 provides nuclease activity for targeted nucleotide exchange, a process that could be used to reengineer yeast genes.
- Yuan SS, Su JH, Hou MF, Yang FW, Zhao S, Lee EY
- Arsenic-induced Mre11 phosphorylation is cell cycle-dependent and defective in NBS cells.
- DNA Repair (Amst). 2002; 1: 137-42
- Display abstract
Cancer-prone diseases ataxia-telangiectasia (AT), Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD) are defective in the repair of DNA double-stranded break (DSB). On the other hand, arsenic (As) has been reported to cause DSB and to be involved in the occurrence of skin, lung and bladder cancers. To dissect the repair mechanism of As-induced DSB, wild type, AT and NBS cells were treated with sodium arsenite to study the complex formation and post-translational modification of Rad50/NBS1/Mre11 repair proteins. Our results showed that Mre11 went through cell cycle-dependent phosphorylation upon sodium arsenite treatment and this post-translational modification required NBS1 but not ATM. Defective As-induced Mre11 phosphorylation was rescued by reconstitution with full length NBS1 in NBS cells. Although As-induced Mre11 phosphorylation was not required for Rad50/NBS1/Mre11 complex formation, it might be required for the formation of Rad50/NBS1/Mre11 nuclear foci upon DNA damage.
- Lobachev KS, Gordenin DA, Resnick MA
- The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements.
- Cell. 2002; 108: 183-93
- Display abstract
Inverted repeats (IRs) that can form a hairpin or cruciform structure are common in the human genome and may be sources of instability. An IR involving the human Alu sequence (Alu-IR) has been studied as a model of such structures in yeast. We found that an Alu-IR is a mitotic recombination hotspot requiring MRE11/RAD50/XRS2 and SAE2. Using a newly developed approach for mapping rare double-strand breaks (DSBs), we established that induction of recombination results from breaks that are terminated by hairpins. Failure of the mre11, rad50, xrs2, and sae2 mutants to process the hairpins blocks recombinational repair of the DSBs and leads to generation of chromosome inverted duplications. Our results suggest an additional role for the Mre11 complex in maintaining genome stability.
- Limoli CL, Giedzinski E, Bonner WM, Cleaver JE
- UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, gamma -H2AX formation, and Mre11 relocalization.
- Proc Natl Acad Sci U S A. 2002; 99: 233-8
- Display abstract
UV-induced replication arrest in the xeroderma pigmentosum variant (XPV) but not in normal cells leads to an accumulation of the Mre11/Rad50/Nbs1 complex and phosphorylated histone H2AX (gamma-H2AX) in large nuclear foci at sites of stalled replication forks. These complexes have been shown to signal the presence of DNA damage, in particular, double-strand breaks (DSBs). This finding suggests that UV damage leads to the formation of DSBs during the course of replication arrest. After UV irradiation, XPV cells showed a fluence-dependent increase in the yield of gamma-H2AX foci that paralleled the production of Mre11 foci. The percentage of foci-positive cells increased rapidly (10-15%) up to fluences of 10 J.(-2) before saturating at higher fluences. Frequencies of gamma-H2AX and Mre11 foci both reached maxima at 4 h after UV irradiation. This pattern contrasts sharply to the situation observed after x-irradiation, where peak levels of gamma-H2AX foci were found to precede the formation of Mre11 foci by several hours. The nuclear distributions of gamma-H2AX and Mre11 were found to colocalize spatially after UV- but not x-irradiation. UV-irradiated XPV cells showed a one-to-one correspondence between Mre11 and gamma-H2AX foci-positive cells. These results show that XPV cells develop DNA DSBs during the course of UV-induced replication arrest. These UV-induced foci occur in cells that are unable to carry out efficient bypass replication of UV damage and may contribute to further genetic variation.
- Huang J, Dynan WS
- Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction.
- Nucleic Acids Res. 2002; 30: 667-74
- Display abstract
The non-homologous end-joining pathway promotes direct enzymatic rejoining of DNA double-strand breaks (DSBs) and is an important determinant of genome stability in eukaryotic cells. Although previous work has shown that this pathway requires Ku, DNA-PKcs and the DNA ligase IV/XRCC4 complex, we found that these proteins alone did not promote efficient joining of cohesive-ended DNA fragments in a cell-free assay. To identify factors that were missing from the reaction, we screened fractions from HeLa cell extracts for the ability to stimulate the joining of cohesive DNA ends in a complementation assay containing other known proteins required for DNA DSB repair. We identified a factor that restored end-joining activity to the level observed in crude nuclear extracts. Factor activity copurified with Rad50, Mre11 and NBS1, three proteins that have previously been implicated in DSB repair by genetic and cytologic evidence. Factor activity was inhibited by anti-Mre11 antibody. The reconstituted system remained fully dependent on DNL IV/XRCC4 and at least partially dependent on Ku, but the requirement for DNA-PKcs was progressively lost as other components were purified. Results support a model where DNA-PKcs acts early in the DSB repair pathway to regulate progression of the reaction, and where Mre11, Rad50 and NBS1 play a key role in aligning DNA ends in a synaptic complex immediately prior to ligation.
- Vasquez KM, Marburger K, Intody Z, Wilson JH
- Manipulating the mammalian genome by homologous recombination.
- Proc Natl Acad Sci U S A. 2001; 98: 8403-10
- Display abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
- Grenon M, Gilbert C, Lowndes NF
- Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex.
- Nat Cell Biol. 2001; 3: 844-7
- Display abstract
Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after gamma-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.
- Chen L, Trujillo K, Ramos W, Sung P, Tomkinson AE
- Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes.
- Mol Cell. 2001; 8: 1105-15
- Display abstract
S. cerevisiae RAD50, MRE11, and XRS2 genes are required for telomere maintenance, cell cycle checkpoint signaling, meiotic recombination, and the efficient repair of DNA double-strand breaks (DSB)s by homologous recombination and nonhomologous end-joining (NHEJ). Here, we demonstrate that the complex formed by Rad50, Mre11, and Xrs2 proteins promotes intermolecular DNA joining by DNA ligase IV (Dnl4) and its associated protein Lif1. Our results show that the Rad50/Mre11/Xrs2 complex juxtaposes linear DNA molecules via their ends to form oligomers and interacts directly with Dnl4/Lif1. We also demonstrate that Rad50/Mre11/Xrs2-mediated intermolecular DNA joining is further stimulated by Hdf1/Hdf2, the yeast homolog of the mammalian Ku70/Ku80 heterodimer. These studies reveal specific functional interplay among the Hdf1/Hdf2, Rad50/Mre11/Xrs2, and Dnl4/Lif1 complexes in NHEJ.
- Paques F, Haber JE
- Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.
- Microbiol Mol Biol Rev. 1999; 63: 349-404
- Display abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
- Moreau S, Ferguson JR, Symington LS
- The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance.
- Mol Cell Biol. 1999; 19: 556-66
- Display abstract
The Saccharomyces cerevisiae MRE11 gene is required for the repair of ionizing radiation-induced DNA damage and for the initiation of meiotic recombination. Sequence analysis has revealed homology between Mre11 and SbcD, the catalytic subunit of an Escherichia coli enzyme with endo- and exonuclease activity, SbcCD. In this study, the purified Mre11 protein was found to have single-stranded endonuclease activity. This activity was absent from mutant proteins containing single amino acid substitutions in either one of two sequence motifs that are shared by Mre11 and SbcD. Mutants with allele mre11-D56N or mre11-H125N were partially sensitive to ionizing radiation but lacked the other mitotic phenotypes of poor vegetative growth, hyperrecombination, defective nonhomologous end joining, and shortened telomeres that are characteristic of the mre11 null mutant. Diploids homozygous for the mre11-H125N mutation failed to sporulate and accumulated unresected double-strand breaks (DSB) during meiosis. We propose that in mitotic cells DSBs can be processed by other nucleases that are partially redundant with Mre11, but these activities are unable to process Spo11-bound DSBs in meiotic cells.
- Chen C, Kolodner RD
- Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants.
- Nat Genet. 1999; 23: 81-5
- Display abstract
Cancer progression is often associated with the accumulation of gross chromosomal rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions or inversions. In many instances, GCRs inactivate tumour-suppressor genes or generate novel fusion proteins that initiate carcinogenesis. The mechanism underlying GCR formation appears to involve interactions between DNA sequences of little or no homology. We previously demonstrated that mutations in the gene encoding the largest subunit of the Saccharomyces cerevisiae single-stranded DNA binding protein (RFA1) increase microhomology-mediated GCR formation. To further our understanding of GCR formation, we have developed a novel mutator assay in S. cerevisiae that allows specific detection of such events. In this assay, the rate of GCR formation was increased 600-5, 000-fold by mutations in RFA1, RAD27, MRE11, XRS2 and RAD50, but was minimally affected by mutations in RAD51, RAD54, RAD57, YKU70, YKU80, LIG4 and POL30. Genetic analysis of these mutants suggested that at least three distinct pathways can suppress GCRs: two that suppress microhomology-mediated GCRs (RFA1 and RAD27) and one that suppresses non-homology-mediated GCRs (RAD50/MRE11/XRS2).
- Boulton SJ, Jackson SP
- Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing.
- EMBO J. 1998; 17: 1819-28
- Display abstract
In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.
- Haber JE
- The many interfaces of Mre11.
- Cell. 1998; 95: 583-6
- Varon R et al.
- Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome.
- Cell. 1998; 93: 467-76
- Display abstract
Nijmegen breakage syndrome (NBS) is an autosomal recessive chromosomal instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Cells from NBS patients are hypersensitive to ionizing radiation with cytogenetic features indistinguishable from ataxia telangiectasia. We describe the positional cloning of a gene encoding a novel protein, nibrin. It contains two modules found in cell cycle checkpoint proteins, a forkhead-associated domain adjacent to a breast cancer carboxy-terminal domain. A truncating 5 bp deletion was identified in the majority of NBS patients, carrying a conserved marker haplotype. Five further truncating mutations were identified in patients with other distinct haplotypes. The domains found in nibrin and the NBS phenotype suggest that this disorder is caused by defective responses to DNA double-strand breaks.
- Chamankhah M, Xiao W
- Molecular cloning and genetic characterization of the Saccharomyces cerevisiae NGS1/MRE11 gene.
- Curr Genet. 1998; 34: 368-74
- Display abstract
The Saccharomyces cerevisiae ngs1-1 mutant was previously identified by its enhanced sensitivity to simple DNA-alkylating agents such as methyl methanesulfonate but not to UV. Molecular cloning and sequencing of NGS1 as a putative DNA-alkylation repair gene revealed that it isidentical to MRE11, a gene that is involved in DNA recombinational repair. In order to investigate functional domains of the Mre11 protein, nucleotide-sequence alterations of a number of mre11 mutant alleles, including ngs1-1, mre11-1 (ts), mre11-2, mre11-3 and mre11-58, were determined. Most of these mutations map to the N-terminus ofMre11, emphasizing the importance of this highly conserved domain. The ngs1-1 and mre11-3 mutants carry nonsense mutations resulting in truncated proteins. Missense mutations were found in mre11-1 (ts), mre11-2 and mre11-58, of which mre11-2 and mre11-58 mapped to the conserved phosphoesterase domains, indicating the involvement of these motifs in the formation and/or processing of DNA double-strand breaks. Finally, mitotic-recombination assays show that the mre11 delta mutation enhances inter-chromosomal recombination but decreases the intra-chromosomal deletion frequency. In addition, MRE11 appears to play different roles during spontaneous and alkylation-induced homologous mitotic recombination.
- Mezard C, Nicolas A
- Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae.
- Mol Cell Biol. 1994; 14: 1278-92
- Display abstract
Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions (the rare transformants which are obtained contain plasmids resulting from deletion-forming intramolecular events involving little or no sequence homology); (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product.
- Schiestl RH, Zhu J, Petes TD
- Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae.
- Mol Cell Biol. 1994; 14: 4493-500
- Display abstract
Restriction enzyme-mediated events (REM events; integration of transforming DNA catalyzed by in vivo action of a restriction enzyme) and illegitimate recombination events (IR events; integration of transforming DNA that shares no homology with the host genomic sequences) have been previously characterized in Saccharomyces cerevisiae. This study determines the effect of mutations in genes that are involved in homologous recombination and/or in the repair of double-stranded DNA breaks on these recombination events. Surprisingly, REM events are completely independent of the double-strand-break repair functions encoded by the RAD51, RAD52, and RAD57 genes but require the RAD50 gene product. IR events are under different genetic control than homologous integration events. In the rad50 mutant, homologous integration occurred at wild-type frequency, whereas the frequency of IR events was 20- to 100-fold reduced. Conversely, the rad52 mutant was grossly deficient in homologous integration (at least 1,000-fold reduced) but showed only a 2- to 8-fold reduction in IR frequency.