Secondary literature sources for PAM
The following references were automatically generated.
- Huang X et al.
- Consequences of COP9 signalosome and 26S proteasome interaction.
- FEBS J. 2005; 272: 3909-17
- Display abstract
The COP9 signalosome (CSN) occurs in all eukaryotic cells. It is a regulatory particle of the ubiquitin (Ub)/26S proteasome system. The eight subunits of the CSN possess sequence homologies with the polypeptides of the 26S proteasome lid complex and just like the lid, the CSN consists of six subunits with PCI (proteasome, COP9 signalosome, initiation factor 3) domains and two components with MPN (Mpr-Pad1-N-terminal) domains. Here we show that the CSN directly interacts with the 26S proteasome and competes with the lid, which has consequences for the peptidase activity of the 26S proteasome in vitro. Flag-CSN2 was permanently expressed in mouse B8 fibroblasts and Flag pull-down experiments revealed the formation of an intact Flag-CSN complex, which is associated with the 26S proteasome. In addition, the Flag pull-downs also precipitated cullins indicating the existence of super-complexes consisting of the CSN, the 26S proteasome and cullin-based Ub ligases. Permanent expression of a chimerical subunit (Flag-CSN2-Rpn6) consisting of the N-terminal 343 amino acids of CSN2 and of the PCI domain of S9/Rpn6, the paralog of CSN2 in the lid complex, did not lead to the assembly of an intact complex showing that the PCI domain of CSN2 is important for complex formation. The consequence of permanent Flag-CSN2 overexpression was de-novo assembly of the CSN complex connected with an accelerated degradation of p53 and stabilization of c-Jun in B8 cells. The possible role of super-complexes composed of the CSN, the 26S proteasome and of Ub ligases in the regulation of protein stability is discussed.
- Scheel H, Hofmann K
- Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes.
- BMC Bioinformatics. 2005; 6: 71-71
- Display abstract
BACKGROUND: The 'lid' subcomplex of the 26S proteasome and the COP9 signalosome (CSN complex) share a common architecture consisting of six subunits harbouring a so-called PCI domain (proteasome, CSN, eIF3) at their C-terminus, plus two subunits containing MPN domains (Mpr1/Pad1 N-terminal). The translation initiation complex eIF3 also contains PCI- and MPN-domain proteins, but seems to deviate from the 6+2 stoichiometry. Initially, the PCI domain was defined as the region of detectable sequence similarity between the components mentioned above. RESULTS: During an exhaustive bioinformatical analysis of proteasome components, we detected multiple instances of tetratrico-peptide repeats (TPR) in the N-terminal region of most PCI proteins, suggesting that their homology is not restricted to the PCI domain. We also detected a previously unrecognized PCI domain in the eIF3 component eIF3k, a protein whose 3D-structure has been determined recently. By using profile-guided alignment techniques, we show that the structural elements found in eIF3k are most likely conserved in all PCI proteins, resulting in a structural model for the canonical PCI domain. CONCLUSION: Our model predicts that the homology domain PCI is not a true domain in the structural sense but rather consists of two subdomains: a C-terminal 'winged helix' domain with a key role in PCI:PCI interaction, preceded by a helical repeat region. The TPR-like repeats detected in the N-terminal region of PCI proteins most likely form an uninterrupted extension of the repeats found within the PCI domain boundaries. This model allows an interpretation of several puzzling experimental results.
- Thompson HG, Harris JW, Brody JP
- Post-translationally modified S12, absent in transformed breast epithelial cells, is not associated with the 26S proteasome and is induced by proteasome inhibitor.
- Int J Cancer. 2004; 111: 338-47
- Display abstract
The 26S proteasome, consisting of the 20S core and 19S regulatory complexes, regulates intracellular protein concentration through proteolytic degradation of targeted substrates. Composition of the 19S regulatory complex as well as posttranslational modifications of the 19S subunits can effectively regulate the activity of the 26S proteasome. Aberrant activity of the 26S proteasome affects the cell cycle, apoptosis and other cellular processes related to cancer. Recent data show an additional proteasome-independent role of 19S subunits in transcriptional regulation. S12 (Rpn8), the human homologue of mouse Mov-34, is a non-ATPase 19S regulatory subunit of the 26S proteasome. Previous studies have identified phosphorylated S12. In our study, we identify a modified S12 isoform (S12-M) with distinct biochemical properties. The S12-M isoform was found in 6 normal, but not 4 transformed, breast epithelial cell lines. Modification of S12 protein can be induced in vitro by addition of the proteasome inhibitor PSI. Modified and unmodified S12 have similar mass, but different isoelectric points, consistent with phosphorylation. In normal cells, unmodified S12 associates with the 26S proteasome, while modified S12-M does not. Whereas transformed cell line nuclei contain neither S12 isoform, S12-M is predominantly cytosolic in normal cells, with the unmodified S12 present in both the nuclei and cytosol. Together with the role of 19S subunits in transcriptional regulation, homology between S12 and eIF3 and TFIIH subunits, coelution with immunoproteasome subunits, and differential posttranslational modification and nuclear localization, these data suggest a differential nuclear function of modified and unmodified S12 in cancer.
- Kim TH, Kim BH, Yahalom A, Chamovitz DA, von Arnim AG
- Translational regulation via 5' mRNA leader sequences revealed by mutational analysis of the Arabidopsis translation initiation factor subunit eIF3h.
- Plant Cell. 2004; 16: 3341-56
- Display abstract
Eukaryotic translation initiation factor 3 (eIF3) consists of core subunits that are conserved from yeast to man as well as less conserved, noncore, subunits with potential regulatory roles. Whereas core subunits tend to be indispensable for cell growth, the roles of the noncore subunits remain poorly understood. We addressed the hypothesis that eIF3 noncore subunits have accessory functions that help to regulate translation initiation, by focusing on the Arabidopsis thaliana eIF3h subunit. Indeed, eIF3h was not essential for general protein translation. However, results from transient expression assays and polysome fractionation indicated that the translation efficiency of specific 5' mRNA leader sequences was compromised in an eif3h mutant, including the mRNA for the basic domain leucine zipper (bZip) transcription factor ATB2/AtbZip11, translation of which is regulated by sucrose. Among other pleiotropic developmental defects, the eif3h mutant required exogenous sugar to transit from seedling to vegetative development, but it was hypersensitive to elevated levels of exogenous sugars. The ATB2 mRNA was rendered sensitive to the eIF3h level by a series of upstream open reading frames. Moreover, eIF3h could physically interact with subunits of the COP9 signalosome, a protein complex implicated primarily in the regulation of protein ubiquitination, supporting a direct biochemical connection between translation initiation and protein turnover. Together, these data implicate eIF3 in mRNA-associated translation initiation events, such as scanning, start codon recognition, or reinitiation and suggest that poor translation initiation of specific mRNAs contributes to the pleiotropic spectrum of phenotypic defects in the eif3h mutant.
- Harari-Steinberg O, Chamovitz DA
- The COP9 signalosome: mediating between kinase signaling and protein degradation.
- Curr Protein Pept Sci. 2004; 5: 185-9
- Display abstract
The COP9 Signalosome (CSN), a highly conserved eight-subunit complex, is found in all higher eukaryotes. It contains eight core subunits, named CSN1-8, in order of decreasing molecular weight. The CSN is structurally similar to the regulatory lid of 26S proteasome and the eukaryotic translation initiation factor eIF3. CSN is also now known to play an essential role in signaling processes controlling many aspects of plant and Drosophila development. Taken together, the various genetic studies demonstrate that the CSN is involved at the nexus between multiple signal inputs and a variety of downstream regulatory cascades controlling specific aspects of cellular differentiation. Research in various organisms has converged onto the notion that CSN is biochemically linked to ubiquitin-dependent protein degradation. Other proposed roles for the CSN include regulating eIF3 and kinase signaling. CSN is itself is both a target for kinase activity and associates with and coordinates activity of kinases. CSN-associated kinases. This kinase activity further regulates the ubiquitin-dependent degradation of various transcription factors. This review concentrates on the proposed activity of the CSN as a regulator of protein phosphorylation.
- Maytal-Kivity V, Pick E, Piran R, Hofmann K, Glickman MH
- The COP9 signalosome-like complex in S. cerevisiae and links to other PCI complexes.
- Int J Biochem Cell Biol. 2003; 35: 706-15
- Display abstract
The COP9 signalosome (CSN), the lid subcomplex of the proteasome and translational initiation factor 3 (eIF3) share structural similarities and are often referred to as the PCI family of complexes. In multicellular eukaryotes, the CSN is highly conserved as an 8-subunit complex but in Saccharomyces cerevisiae the complex is rather divergent. We further characterize the composition and properties of the CSN in budding yeast and its interactions with these related complexes. Using the generalized profile method we identified CSN candidates, four with PCI domains: Csn9, Csn10, Pci8/Csn11, and Csn12, and one with an MPN domain, Csn5/Rri1. These proteins and an additional interactor, Csi1, were tested for pairwise interactions by yeast two-hybrid and were found to form a cluster surrounding Csn12. Csn5 and Csn12 cofractionate in a complexed form with an apparent molecular weight of roughly 250kDa. However, Csn5 migrates as a monomer in Deltacsn12 supporting the pivotal role of Csn12 in stabilizing the complex. Confocal fluorescence microscopy detects GFP-tagged Csn5 preferentially in the nucleus, whereas in absence of Csn12, Csn10, Pci8/Csn11, or Csi1, Csn5 is delocalized throughout the cell, indicating that multiple subunits are required for nuclear localization of Csn5. Two CSN subunits, Csn9 and Csi1, interact with the proteasome lid subunit Rpn5. Pci8/Csn11 has previously been shown to interact with eIF3. Together, these results point to a network of interactions between these three structurally similar, yet functionally diverse, complexes.
- Tran HJ, Allen MD, Lowe J, Bycroft M
- Structure of the Jab1/MPN domain and its implications for proteasome function.
- Biochemistry. 2003; 42: 11460-5
- Display abstract
The 26S proteasome is responsible for the degradation of polyubiquitinated proteins. During this process the polyubiquitin chain is removed. The identity of the proteasomal component that is responsible for this activity has not been clear, as it contains no subunits that resemble known deubiquitinating enzymes. The Jab1/MPN domain is a widespread 120 amino acid protein module found in archaea, bacteria, and eukaryotes. In eukaryotes the Jab1/MPN domain is found in subunits of several multiprotein complexes including the proteasome. Recently it has been proposed that the Jab1/MPN domain of the proteasomal subunit Rpn11 is responsible for the removal of the polyubiquitin chain from substrate proteins. Here we report the crystal structure and characterization of AF2198, a Jab1/MPN domain protein from Archaeoglobolus fulgidus. The structure reveals a fold that resembles that of cytidine deaminase and places the Jab1/MPN domain in a superfamily of metal dependent hydrolases.
- Lier S, Paululat A
- The proteasome regulatory particle subunit Rpn6 is required for Drosophila development and interacts physically with signalosome subunit Alien/CSN2.
- Gene. 2002; 298: 109-19
- Display abstract
The eukaryotic 26S proteasome plays a central role in ubiquitin-dependent intracellular protein metabolism. The multimeric holoenzyme is composed of two major subcomplexes, known as the 20S proteolytic core particle and the 19S regulatory particle (RP). The RP can be further dissected into two multisubunit complexes, the lid and the base complex. The lid complex shares striking similarities with another multiprotein complex, the COP9 signalosome. Several subunits of both complexes contain the characteristic PCI domain, a structural motif important for complex assembly. The COP9 signalosome was shown to act as a versatile regulator in numerous pathways. To help define the molecular interactions of the signalosome during Drosophila development, we performed a yeast two-hybrid screen to identify proteins that physically interact with subunit 2 of the complex, namely Alien/CSN2. Here, we report that Drosophila Rpn6, a non-ATPase subunit of the RP lid complex, interacts with Alien/CSN2 via its PCI domain. The temporal and spatial expression patterns of Rpn6 and alien/CSN2 overlap on a large scale during development providing additional evidence for their interaction in vivo. Analyses of an Rpn6 P element insertion mutant and newly generated Rpn6 alleles reveal that Rpn6 is essential for Drosophila development.
- Hoareau Alves K, Bochard V, Rety S, Jalinot P
- Association of the mammalian proto-oncoprotein Int-6 with the three protein complexes eIF3, COP9 signalosome and 26S proteasome.
- FEBS Lett. 2002; 527: 15-21
- Display abstract
The mammalian Int-6 protein has been characterized as a subunit of the eIF3 translation initiation factor and also as a transforming protein when its C-terminal part is deleted. It includes a protein domain, which also exists in various subunits of eIF3, of the 26S proteasome and of the COP9 signalosome (CSN). By performing a two-hybrid screen with Int-6 as bait, we have isolated subunits belonging to all three complexes, namely eIF3-p110, Rpt4, CSN3 and CSN6. The results of transient expression experiments in COS7 cells confirmed the interaction of Int-6 with Rpt4, CSN3 and CSN6, but also showed that Int-6 is able to bind another subunit of the CSN: CSN7a. Immunoprecipitation experiments performed with the endogenous proteins showed that Int-6 binds the entire CSN, but in low amount, and also that Int-6 is associated with the 26S proteasome. Taken together these results show that the Int-6 protein can bind the three complexes with various efficiencies, possibly exerting a regulatory activity in both protein translation and degradation.
- Tokumoto M, Horiguchi R, Nagahama Y, Ishikawa K, Tokumoto T
- Two proteins, a goldfish 20S proteasome subunit and the protein interacting with 26S proteasome, change in the meiotic cell cycle.
- Eur J Biochem. 2000; 267: 97-103
- Display abstract
To investigate the regulatory mechanism for the proteasome in the meiotic cell cycle, we purified the 26S proteasome from immature (in G2-phase) and mature (in M-phase) oocytes, and compared its subunits by immunoblotting. At least two protein bands, at 30 kDa (detected by GC3beta antibody) and 62 kDa (detected by 1-4D5 antibody), differed between 26S proteasomes. A monoclonal antibody, GC3beta cross-reacted with two bands in the 26S proteasome from immature oocytes, however, the upper band was absent in the 26S proteasome from mature oocytes. The 62-kDa protein band detected by 1-4D5 antibody was not detected in the immature oocyte 26S proteasome; however, a band was detected in mature oocyte 26S proteasome. The cDNAs encoding these proteins were isolated by an immunoscreening method using the monoclonal antibodies. The 30-kDa protein was an alpha4 subunit, which is one of the alpha-subunit group of the 20S proteasome, and the 62-kDa protein was a homologue of CCTepsilon, one of the components of eukaryotic molecular chaperones. Phosphatase treatment of the 26S proteasome revealed that a part of the alpha4 subunit of goldfish 20S proteasome, alpha4_ca, is phosphorylated in G2-phase and dephosphorylated in M-phase. A binding assay using a recombinant goldfish CCTepsilon revealed that unmodified CCTepsilon interacts with the 26S proteasome. Fertilization triggers a transition from meiotic metaphase to mitotic interphase. During fertilization, a GC3beta cross-reacting upper band reappeared. The 62-kDa band dissociated from the 26S proteasome. As a result, the 26S proteasome changed to an immature type from a mature type during fertilization. These results suggest that the 26S proteasome is changed reversibly during the meiotic cell cycle by modification of its subunits and interactions between regulators.
- Wei N et al.
- The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex.
- Curr Biol. 1998; 8: 919-22
- Display abstract
The COP9 complex, genetically identified in Arabidopsis as a repressor of photomorphogenesis, is composed of multiple subunits including COP9, FUS6 (also known as COP11) and the Arabidopsis JAB1 homolog 1 (AJH1) ([1-3]; unpublished observations).We have previously demonstrated the existence of the mammalian counterpart of the COP9 complex and purified the complex by conventional biochemical and immunoaffinity procedures [4]. Here, we report the molecular identities of all eight subunits of the mammalian COP9 complex. We show that the COP9 complex is highly conserved between mammals and higher plants, and probably among most multicellular eukaryotes. It is not present in the single-cell eukaryote Saccharomyces cerevisiae, however. All of the subunits of the COP9 complex contain structural features that are also present in the components of the proteasome regulatory complex and the translation initiation factor eIF3 complex. Six subunits of the COP9 complex have overall similarity with six distinct non-ATPase regulatory subunits of the 26S proteasome, suggesting that the COP9 complex and the proteasome regulatory complex are closely related in their evolutionary origin. Subunits of the COP9 complex include regulators of the Jun N-terminal kinase (JNK) and c-Jun, a nuclear hormone receptor binding protein and a cell-cycle regulator. This suggests that the COP9 complex is an important cellular regulator modulating multiple signaling pathways.
- Ferreira PA, Yunfei C, Schick D, Roepman R
- The cyclophilin-like domain mediates the association of Ran-binding protein 2 with subunits of the 19 S regulatory complex of the proteasome.
- J Biol Chem. 1998; 273: 24676-82
- Display abstract
The combination of the Ran-binding domain 4 and cyclophilin domains of Ran-binding protein 2 selectively associate with a subset of G protein-coupled receptors, red/green opsins, upon cis-trans prolyl isomerase-dependent and direct modification of opsin followed by association of the modified opsin isoform to Ran-binding domain 4. This effect enhances in vivo the production of functional receptor and generates an opsin isoform with no propensity to self-aggregate in vitro. We now show that another domain of Ran-binding protein 2, cyclophilin-like domain, specifically associates with the 112-kDa subunit, P112, and other subunits of the 19 S regulatory complex of the 26 S proteasome in the neuroretina. This association possibly mediates Ran-binding protein 2 limited proteolysis into a smaller and stable isoform. Also, the interaction of Ran-binding protein 2 with P112 regulatory subunit of the 26 S proteasome involves still another protein, a putative kinesin-like protein. Our results indicate that Ran-binding protein 2 is a key component of a macro-assembly complex selectively linking protein biogenesis with the proteasome pathway and, thus, with potential implications for the presentation of misfolded and ubiquitin-like modified proteins to this proteolytic machinery.
- Kawahara H
- [Sequence motifs in proteasome subunits and their possible functions]
- Tanpakushitsu Kakusan Koso. 1997; 42: 2154-64
- Wang W, Chevray PM, Nathans D
- Mammalian Sug1 and c-Fos in the nuclear 26S proteasome.
- Proc Natl Acad Sci U S A. 1996; 93: 8236-40
- Display abstract
In a search for regulatory proteins that interact with the leucine zipper motif of c-Fos in the yeast two-hybrid screen, we have identified a protein (FZA-B) that has extensive sequence similarity to SUG1 of Saccharomyces cerevisiae. Here we show that FZA-B can functionally substitute for SUG1 in yeast and that FZA-B interacts with Fos proteins in vitro through their leucine zippers. In rat liver and in HeLa cells, FZA-B is present in the 26S proteasome complex, as is c-Fos. Immobilized antibody raised against an FZA-B-specific peptide depleted peptidase activity, proteasomal proteins, FZA-B, and c-Fos from a 26S proteasome preparation. FZA-B is found predominantly in the nuclear fraction of COS cells expressing an FZA-B transgene and in the nuclear 26S proteasome of HeLa cells. We conclude that FZA-B is the mammalian homolog of SUG1 (mSug1) and that it is present in the nuclear 26S proteasome of cells. Our results suggest that mSug1 may be involved in the degradation of c-Fos and other transcription factors.