Secondary literature sources for PSN
The following references were automatically generated.
- Esler WP et al.
- Activity-dependent isolation of the presenilin- gamma -secretase complex reveals nicastrin and a gamma substrate.
- Proc Natl Acad Sci U S A. 2002; 99: 2720-5
- Display abstract
Presenilin heterodimers apparently contain the active site of gamma-secretase, a polytopic aspartyl protease involved in the transmembrane processing of both the Notch receptor and the amyloid-beta precursor protein. Although critical to embryonic development and the pathogenesis of Alzheimer's disease, this protease is difficult to characterize, primarily because it is a multicomponent complex of integral membrane proteins. Here the functional gamma-secretase complex was isolated by using an immobilized active site-directed inhibitor of the protease. Presenilin heterodimers and nicastrin bound specifically to this inhibitor under conditions tightly correlating with protease activity, whereas several other presenilin-interacting proteins (beta-catenin, calsenilin, and presenilin-associated protein) did not bind. Moreover, anti-nicastrin antibodies immunoprecipitated gamma-secretase activity from detergent-solubilized microsomes. Unexpectedly, C83, the major endogenous amyloid-beta precursor protein substrate of gamma-secretase, was also quantitatively associated with the complex. These results provide direct biochemical evidence that nicastrin is a member of the active gamma-secretase complex, indicate that beta-catenin, calsenilin, and presenilin-associated protein are not required for gamma activity, and suggest an unprecedented mechanism of substrate-protease interaction.
- Wolfe MS, Selkoe DJ
- Biochemistry. Intramembrane proteases--mixing oil and water.
- Science. 2002; 296: 2156-7
- Kopan R, Goate A
- Aph-2/Nicastrin: an essential component of gamma-secretase and regulator of Notch signaling and Presenilin localization.
- Neuron. 2002; 33: 321-4
- Display abstract
The Notch signaling pathway plays a role in cell fate specification in many metazoans. A critical aspect of Notch activation involves proteolysis of the Notch receptor. This cleavage event requires Presenilin as a component of a large multiprotein complex, gamma-secretase. This complex mediates a similar cleavage event of the beta-amyloid precursor protein (APP). The transmembrane protein Nicastrin has been found to associate with Presenilin, Notch, and APP. Recent biochemical and genetic studies have focused on elucidating the function of this protein.
- Selkoe DJ
- Presenilin, Notch, and the genesis and treatment of Alzheimer's disease.
- Proc Natl Acad Sci U S A. 2001; 98: 11039-41
- Display abstract
Elucidation of the proteolytic processing of the amyloid beta-protein precursor (APP) has revealed that one of the two proteases (gamma-secretase) that cleave APP to release amyloid beta-protein (Abeta) is likely to be presenilin. Presenilin also mediates the gamma-secretase-like cleavage of Notch receptors to enable signaling by their cytoplasmic domains. Therefore, APP and Notch may be the first identified substrates of a unique intramembranous aspartyl protease that has presenilin as its active-site component. In view of the evidence for a central role of cerebral build-up of Abeta in the pathogenesis of Alzheimer's disease, this disorder appears to have arisen in the human population as a late-life consequence of the conservation of a critical developmental pathway.
- Esler WP, Wolfe MS
- A portrait of Alzheimer secretases--new features and familiar faces.
- Science. 2001; 293: 1449-54
- Display abstract
The amyloid beta-peptide (Abeta) is a principal component of the cerebral plaques found in the brains of patients with Alzeheimer's disease (AD). This insoluble 40- to 42-amino acid peptide is formed by the cleavage of the Abeta precursor protein (APP). The three proteases that cleave APP, alpha-, beta-, and gamma-secretases, have been implicated in the etiology of AD. beta-Secretase is a membrane-anchored protein with clear homology to soluble aspartyl proteases, and alpha-secretase displays characteristics of certain membrane-tethered metalloproteases. gamma-Secretase is apparently an oligomeric complex that includes the presenilins, which may be the catalytic component of this protease. Identification of the alpha-, beta-, and gamma-secretases provides potential targets for designing new drugs to treat AD.
- Tomita T et al.
- The first proline of PALP motif at the C terminus of presenilins is obligatory for stabilization, complex formation, and gamma-secretase activities of presenilins.
- J Biol Chem. 2001; 276: 33273-81
- Display abstract
Mutations in presenilin (PS) genes cause early-onset familial Alzheimer's disease by increasing production of the amyloidogenic form of amyloid beta peptides ending at residue 42 (Abeta42). PS is an evolutionarily conserved multipass transmembrane protein, and all known PS proteins contain a proline-alanine-leucine-proline (PALP) motif starting at proline (P) 414 (amino acid numbering based on human PS2) at the C terminus. Furthermore, missense mutations that replace the first proline of PALP with leucine (P414L) lead to a loss-of-function of PS in Drosophila melanogaster and Caenorhabditis elegans. To elucidate the roles of the PALP motif in PS structure and function, we analyzed neuro2a as well as PS1/2 null fibroblast cell lines transfected with human PS harboring mutations at the PALP motif. P414L mutation in PS2 (and its equivalent in PS1) abrogated stabilization, high molecular weight complex formation, and entry to Golgi/trans-Golgi network of PS proteins, resulting in failure of Abeta42 overproduction on familial Alzheimer's disease mutant basis as well as of site-3 cleavage of Notch. These data suggest that the first proline of the PALP motif plays a crucial role in the stabilization and formation of the high molecular weight complex of PS, the latter being the active form with intramembrane proteolytic activities.
- Wolfe MS
- gamma-Secretase inhibitors as molecular probes of presenilin function.
- J Mol Neurosci. 2001; 17: 199-204
- Display abstract
Mutations in the presenilins cause Alzheimer's disease (AD) and alter gamma-secretase activity to increase the production of the 42-residue amyloid-beta peptide (Abeta) found disproportionally in the cerebral plaques that characterize the disease. The serpentine presenilins are required for transmembrane cleavage of both the amyloid-beta precursor protein (APP) and the Notch receptor by y-secretase, and presenilins are biochemically associated with the protease. Inhibitors of gamma-secretase have provided critical clues to the function of presenilins. Pharmacological profiling suggested that gamma-secretase is an aspartyl protease, leading to the identification of two conserved aspartates important to presenilin's role in proteolysis. Conversion of transition-state analogue inhibitors of gamma-secretase to affinity reagents resulted in specific tagging of the heterodimeric form of presenilins, strongly suggesting that the active site of gamma-secretase lies at the interface of the presenilin heterodimer. Heterodimeric presenilin appears to be the catalytic portion of a multi-protein gamma-secretase complex.
- Fortini ME
- Notch and presenilin: a proteolytic mechanism emerges.
- Curr Opin Cell Biol. 2001; 13: 627-34
- Display abstract
Presenilins are needed for proteolytic processing of transmembrane proteins of the Notch/Lin-12 family and for cleavage of the amyloid precursor protein. Accumulating evidence now strongly implicates Presenilin as the catalytic core of a multiprotein complex that executes an unusual intramembranous cleavage of its substrates. In the case of amyloid precursor protein, this cleavage contributes to the generation of small, toxic amyloid peptides that trigger the pathological development of Alzheimer's disease. In the Notch/Lin-12 pathway, Presenilin-mediated cleavage of the receptor is a crucial feature of ligand-induced receptor activation and signal transduction. In this pathway, the Presenilins perform a regulated cleavage event that follows additional processing steps during receptor maturation and ligand-induced ectodomain removal.
- Mizutani T, Taniguchi Y, Aoki T, Hashimoto N, Honjo T
- Conservation of the biochemical mechanisms of signal transduction among mammalian Notch family members.
- Proc Natl Acad Sci U S A. 2001; 98: 9026-31
- Display abstract
Mouse Notch1, which plays an important role in cell fate determination in development, is proteolytically processed within its transmembrane domain by unidentified gamma-secretase-like activity that depends on presenilin. To study this proteolytic event, we established a cell-free Notch cleavage assay system using the membrane fraction of fibroblast transfectants of various Notch constructs with deletion of the extracellular portion (Notch DeltaE). The cytoplasmic portion of Notch1 DeltaE was released from the membrane upon incubation at 37 degrees C, which was inhibited by the specific gamma-secretase inhibitor, MW167, or by overexpression of dominant negative presenilin1. Likewise, other members of mouse Notch family were proteolytically cleaved in a presenilin-dependent, MW167-sensitive manner in vivo as well as in the cell-free Notch DeltaE cleavage assay system. All four members of the mouse Notch family migrated to the nucleus and activated the transcription from the promoter carrying the RBP-J consensus sequences after they were released from the membrane. These results demonstrate the conserved biochemical mechanism of signal transduction among mammalian Notch family members.
- Golde TE, Younkin SG
- Presenilins as therapeutic targets for the treatment of Alzheimer's disease.
- Trends Mol Med. 2001; 7: 264-9
- Display abstract
Studies demonstrating that accumulation and aggregation of the amyloid beta protein (Abeta) within the brain is likely to cause Alzheimer's disease (AD) have provided the rationale for therapeutic strategies aimed at influencing Abeta production, aggregation and clearance. gamma-secretase catalyzes the final cleavage that releases the Abeta from its precursor; therefore, it is a potential therapeutic target for the treatment of AD. Recent data show that the polytopic membrane proteins presenilin 1 and presenilin 2 are either catalytic components or essential co-factors of a membrane-bound proteolytic complex that possesses gamma-secretase activity. Although recent findings demonstrating that gamma-secretase inhibitors bind directly to presenilins (PSs) further support a catalytic role for PSs in gamma-secretase cleavage, additional studies are still needed to clarify the role of PSs in gamma-secretase cleavage and the use of targeting PSs to reduce Abeta production.
- Hartmann D, Tournoy J, Saftig P, Annaert W, De Strooper B
- Implication of APP secretases in notch signaling.
- J Mol Neurosci. 2001; 17: 171-81
- Display abstract
Signaling via notch receptors and their ligands is an evolutionary ancient and highly conserved mechanism governing cell-fate decisions throughout the animal kingdom. Upon ligand binding, notch receptors are subject to a two-step proteolysis essential for signal transduction. First, the ectodomain is removed by an enzyme cleaving near the outer-membrane surface ("site2"). Consecutively, the notch intracellular domain is liberated by a second protease cutting within the transmembrane sequence ("site3"). The intracellular domain is then transferred to the nucleus to act as a transcriptional coactivator. The proteases involved in notch receptor activation are shared with other proteins undergoing regulated intramembrane proteolysis, with intriguing parallels to APP. Specifically, site3 cleavage of Notch, as well as gamma-secretase processing of APP depend both critically on presenilins 1 and 2. Moreover, ADAM 10 and ADAM 17, the proteases proposed to perform site2 cleavage, are also the most probable candidate alpha-secretases to cleave APP. While the biological significance of APP processing remains to be further elucidated, interference with notch signaling has been shown to have severe consequences both in small animal models as well as in humans. Thus, a growing number of long known genetic syndromes like Alagille syndrome or Fallot's tetralogy can be caused by mutations of genes relevant for the notch signaling pathway. Likewise, the anticipated interference of gamma-secretase inhibitors with site3 cleavage may turn out to be a major obstacle for this therapeutic approach to Alzheimer's disease.
- Iwatsubo T
- [beta-amyloid cascade: current status and future directions]
- Rinsho Shinkeigaku. 2000; 40: 1228-30
- Display abstract
The deposition of amyloid beta peptides (A beta) is one of the pathological hallmarks of Alzheimer's disease (AD) brains. A beta are composed of 40-42 amino acid peptides that are proteolytically cleaved from beta APP. The deposition as diffuse plaques of a species of A beta ending at the 42nd residue (A beta 42) is one of the earliest pathological changes of AD. Importantly, mutations in beta APP genes located in positions flanking the A beta sequences have been shown to cosegregate with the clinical manifestations of AD in a subset of familial AD (FAD) pedigrees. Moreover, mutations in presenilin (PS) 1 and 2, novel polytopic membrane proteins identified as causative molecules for the majority of FAD, also increase the production of A beta 42. These results support the notion that A beta (42) plays a key role in the cascadic development of AD. Recently, PS 1 and PS 2 are shown to be the catalytic subunits of gamma-secretase that cleave the intramembrane segments of beta APP and Notch. Future therapeutic approaches to reduce amyloid deposition, including inhibitors for beta- and gamma-secretases, as well as beta-amyloid vaccine therapy, raise high hopes towards the cure and prevention of AD, although the outcome thereof would be key to the consistency of amyloid cascade hypothesis.
- Murphy MP et al.
- Presenilin 1 regulates pharmacologically distinct gamma -secretase activities. Implications for the role of presenilin in gamma -secretase cleavage.
- J Biol Chem. 2000; 275: 26277-84
- Display abstract
Presenilins (PSs) are polytopic membrane proteins that have been implicated as potential therapeutic targets in Alzheimer's disease because of their role in regulating the gamma-secretase cleavage that generates the amyloid beta protein (Abeta). It is not clear how PSs regulate gamma-secretase cleavage, but there is evidence that PSs could be either essential cofactors in the gamma-secretase cleavage, gamma-secretase themselves, or regulators of intracellular trafficking that indirectly influence gamma-secretase cleavage. Using presenilin 1 (PS1) mutants that inhibit Abeta production in conjunction with transmembrane domain mutants of the amyloid protein precursor that are cleaved by pharmacologically distinct gamma-secretases, we show that PS1 regulates multiple pharmacologically distinct gamma-secretase activities as well as inducible alpha-secretase activity. It is likely that PS1 acts indirectly to regulate these activities (as in a trafficking or chaperone role), because these data indicate that for PS1 to be gamma-secretase it must either have multiple active sites or exist in a variety of catalytically active forms that are altered to an equivalent extent by the mutations we have studied.
- Steiner H et al.
- Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases.
- Nat Cell Biol. 2000; 2: 848-51
- Display abstract
Endoproteolysis of beta-amyloid precursor protein (betaAPP) and Notch requires conserved aspartate residues in presenilins 1 and 2 (PS1 and PS2). Although PS1 and PS2 have therefore been proposed to be aspartyl proteases, no homology to other aspartyl proteases has been found. Here we identify homology between the presenilin active site and polytopic aspartyl proteases of bacterial origin, thus supporting the hypothesis that presenilins are novel aspartyl proteases.
- Li YM et al.
- Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1.
- Nature. 2000; 405: 689-94
- Display abstract
Cleavage of amyloid precursor protein (APP) by the beta- and gamma-secretases generates the amino and carboxy termini, respectively, of the A beta amyloidogenic peptides A beta40 and A beta42--the major constituents of the amyloid plaques in the brain parenchyma of Alzheimer's disease patients. There is evidence that the polytopic membrane-spanning proteins, presenilin 1 and 2 (PS1 and PS2), are important determinants of gamma-secretase activity: mutations in PS1 and PS2 that are associated with early-onset familial Alzheimer's disease increase the production of A beta42 (refs 4-6), the more amyloidogenic peptide; gamma-secretase activity is reduced in neuronal cultures derived from PS1-deficient mouse embryos; and directed mutagenesis of two conserved aspartates in transmembrane segments of PS1 inactivates the ability of gamma-secretase to catalyse processing of APP within its transmembrane domain. It is unknown, however, whether PS1 (which has little or no homology to any known aspartyl protease) is itself a transmembrane aspartyl protease or a gamma-secretase cofactor, or helps to colocalize gamma-secretase and APP. Here we report photoaffinity labelling of PS1 (and PS2) by potent gamma-secretase inhibitors that were designed to function as transition state analogue inhibitors directed to the active site of an aspartyl protease. This observation indicates that PS1 (and PS2) may contain the active site of gamma-secretase. Interestingly, the intact, single-chain form of wild-type PS1 is not labelled by an active-site-directed photoaffinity probe, suggesting that intact wild-type PS1 may be an aspartyl protease zymogen.
- Esler WP et al.
- Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1.
- Nat Cell Biol. 2000; 2: 428-34
- Display abstract
The beta-amyloid precursor protein (beta-APP), which is involved in the pathogenesis of Alzheimer's disease, and the Notch receptor, which is responsible for critical signalling events during development, both undergo unusual proteolysis within their transmembrane domains by unknown gamma-secretases. Here we show that an affinity reagent designed to interact with the active site of gamma-secretase binds directly and specifically to heterodimeric forms of presenilins, polytopic proteins that are mutated in hereditary Alzheimer's and are known mediators of gamma-secretase cleavage of both beta-APP and Notch. These results provide evidence that heterodimeric presenilins contain the active site of gamma-secretase, and validate presenilins as principal targets for the design of drugs to treat and prevent Alzheimer's disease.
- Yu G et al.
- Mutation of conserved aspartates affect maturation of presenilin 1 and presenilin 2 complexes.
- Acta Neurol Scand Suppl. 2000; 176: 6-11
- Display abstract
Presenilin (PS1 and PS2) holoproteins are transiently incorporated into low molecular weight (MW) complexes. During subsequent incorporation into a higher MW complex, they undergo endoproteolysis to generate stable N- and C-terminal fragments (NTF/CTF). Mutation of either of two conserved aspartate residues in transmembrane domains inhibits both presenilin-endoproteolysis and the proteolytic processing of APP and Notch. We show that aspartate-mutant holoprotein presenilins are not incorporated into the high molecular weight, NTF/CTF-containing complexes. Aspartate-mutant presenilin holoproteins also preclude entry of endogenous wild-type PS1/PS2 into the high molecular weight complexes, but do not affect the incorporation of wild-type holoproteins into lower molecular weight holoprotein complexes. These data suggest that the loss-of-function aspartate-mutants cause altered PS complex maturation, and argue that the functional presenilin moieties are contained in the high molecular weight presenilin NTF/CTF-containing complexes.
- Murphy MP, Wang R, Fraser PE, Fauq A, Golde TE
- An empirical model of gamma-secretase activity.
- Ann N Y Acad Sci. 2000; 920: 233-40
- Display abstract
gamma-Secretase catalyzes the cleavage at the carboxyl terminus of A beta to release it from the APP. While gamma-secretase is a major therapeutic drug target for the treatment of Alzheimer's disease (AD), it appears to be an unusual proteolytic activity, and, to date, no protease responsible for this activity has been identified. Based on studies of APP transmembrane domain (TMD) mutants, it is apparent that there are multiple pharmacologically distinct gamma-secretase activities that are spatially restricted and that presenilins (PS) regulate cleavage by gamma-secretases in a protease independent fashion. Based on these studies, we propose a multiprotease model for gamma-secretase activity and predict that the gamma-secretases are likely to be closely related proteases.
- Fraser PE et al.
- Presenilin structure, function and role in Alzheimer disease.
- Biochim Biophys Acta. 2000; 1502: 1-15
- Display abstract
Numerous missense mutations in the presenilins are associated with the autosomal dominant form of familial Alzheimer disease. Presenilin genes encode polytopic transmembrane proteins, which are processed by proteolytic cleavage and form high-molecular-weight complexes under physiological conditions. The presenilins have been suggested to be functionally involved in developmental morphogenesis, unfolded protein responses and processing of selected proteins including the beta-amyloid precursor protein. Although the underlying mechanism by which presenilin mutations lead to development of Alzheimer disease remains elusive, one consistent mutational effect is an overproduction of long-tailed amyloid beta-peptides. Furthermore, presenilins interact with beta-catenin to form presenilin complexes, and the physiological and mutational effects are also observed in the catenin signal transduction pathway.
- Nunan J, Small DH
- Regulation of APP cleavage by alpha-, beta- and gamma-secretases.
- FEBS Lett. 2000; 483: 6-10
- Display abstract
Proteolytic cleavage of the amyloid protein from the amyloid protein precursor (APP) by APP secretases is a key event in Alzheimer's disease (AD) pathogenesis. alpha-Secretases cleave APP within the amyloid sequences, whereas beta- and gamma-secretases cleave on the N- and C-terminal ends respectively. The transmembrane aspartyl protease BACE has been identified as beta-secretase and several proteases (ADAM-10, TACE, PC7) may be alpha-secretases. A number of studies have suggested that presenilins could be gamma-secretases, although this remains to be demonstrated conclusively. Inhibition of beta- and gamma-secretase, or stimulation of alpha-secretase, is a rational strategy for therapeutic intervention in AD.
- Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J
- Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein.
- Proc Natl Acad Sci U S A. 2000; 97: 1456-60
- Display abstract
The cDNAs of two new human membrane-associated aspartic proteases, memapsin 1 and memapsin 2, have been cloned and sequenced. The deduced amino acid sequences show that each contains the typical pre, pro, and aspartic protease regions, but each also has a C-terminal extension of over 80 residues, which includes a single transmembrane domain and a C-terminal cytosolic domain. Memapsin 2 mRNA is abundant in human brain. The protease domain of memapsin 2 cDNA was expressed in Escherichia coli and was purified. Recombinant memapsin 2 specifically hydrolyzed peptides derived from the beta-secretase site of both the wild-type and Swedish mutant beta-amyloid precursor protein (APP) with over 60-fold increase of catalytic efficiency for the latter. Expression of APP and memapsin 2 in HeLa cells showed that memapsin 2 cleaved the beta-secretase site of APP intracellularly. These and other results suggest that memapsin 2 fits all of the criteria of beta-secretase, which catalyzes the rate-limiting step of the in vivo production of the beta-amyloid (Abeta) peptide leading to the progression of Alzheimer's disease. Recombinant memapsin 2 also cleaved a peptide derived from the processing site of presenilin 1, albeit with poor kinetic efficiency. Alignment of cleavage site sequences of peptides indicates that the specificity of memapsin 2 resides mainly at the S(1)' subsite, which prefers small side chains such as Ala, Ser, and Asp.
- Yu G et al.
- Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing.
- Nature. 2000; 407: 48-54
- Display abstract
Nicastrin, a transmembrane glycoprotein, forms high molecular weight complexes with presenilin 1 and presenilin 2. Suppression of nicastrin expression in Caenorhabditis elegans embryos induces a subset of notch/glp-1 phenotypes similar to those induced by simultaneous null mutations in both presenilin homologues of C. elegans (sel-12 and hop-1). Nicastrin also binds carboxy-terminal derivatives of beta-amyloid precursor protein (betaAPP), and modulates the production of the amyloid beta-peptide (A beta) from these derivatives. Missense mutations in a conserved hydrophilic domain of nicastrin increase A beta42 and A beta40 peptide secretion. Deletions in this domain inhibit A beta production. Nicastrin and presenilins are therefore likely to be functional components of a multimeric complex necessary for the intramembranous proteolysis of proteins such as Notch/GLP-1 and betaAPP.
- Seiffert D et al.
- Presenilin-1 and -2 are molecular targets for gamma-secretase inhibitors.
- J Biol Chem. 2000; 275: 34086-91
- Display abstract
Presenilins are integral membrane protein involved in the production of amyloid beta-protein. Mutations of the presenilin-1 and -2 gene are associated with familial Alzheimer's disease and are thought to alter gamma-secretase cleavage of the beta-amyloid precursor protein, leading to increased production of longer and more amyloidogenic forms of A beta, the 4-kDa beta-peptide. Here, we show that radiolabeled gamma-secretase inhibitors bind to mammalian cell membranes, and a benzophenone analog specifically photocross-links three major membrane polypeptides. A positive correlation is observed among these compounds for inhibition of cellular A beta formation, inhibition of membrane binding and cross-linking. Immunological techniques establish N- and C-terminal fragments of presenilin-1 as specifically cross-linked polypeptides. Furthermore, binding of gamma-secretase inhibitors to embryonic membranes derived from presenilin-1 knockout embryos is reduced in a gene dose-dependent manner. In addition, C-terminal fragments of presenilin-2 are specifically cross-linked. Taken together, these results indicate that potent and selective gamma-secretase inhibitors block A beta formation by binding to presenilin-1 and -2.
- Ray WJ et al.
- Cell surface presenilin-1 participates in the gamma-secretase-like proteolysis of Notch.
- J Biol Chem. 1999; 274: 36801-7
- Display abstract
Presenilin-1 (PS1), a polytopic membrane protein primarily localized to the endoplasmic reticulum, is required for efficient proteolysis of both Notch and beta-amyloid precursor protein (APP) within their trans- membrane domains. The activity that cleaves APP (called gamma-secretase) has properties of an aspartyl protease, and mutation of either of the two aspartate residues located in adjacent transmembrane domains of PS1 inhibits gamma-secretase processing of APP. We show here that these aspartates are required for Notch processing, since mutation of these residues prevents PS1 from inducing the gamma-secretase-like proteolysis of a Notch1 derivative. Thus PS1 might function in Notch cleavage as an aspartyl protease or di-aspartyl protease cofactor. However, the ER localization of PS1 is inconsistent with that hypothesis, since Notch cleavage occurs near the cell surface. Using pulse-chase and biotinylation assays, we provide evidence that PS1 binds Notch in the ER/Golgi and is then co-transported to the plasma membrane as a complex. PS1 aspartate mutants were indistinguishable from wild-type PS1 in their ability to bind Notch or traffic with it to the cell surface, and did not alter the secretion of Notch. Thus, PS1 appears to function specifically in Notch proteolysis near the plasma membrane as an aspartyl protease or cofactor.
- Haass C, De Strooper B
- The presenilins in Alzheimer's disease--proteolysis holds the key.
- Science. 1999; 286: 916-9
- Display abstract
Alzheimer's disease (AD) research has shown that patients with an inherited form of the disease carry mutations in the presenilin proteins or the amyloid precursor protein (APP). These disease-linked mutations result in increased production of the longer form of amyloid-beta (the primary component of the amyloid deposits found in AD brains). However, it is not clear how the presenilins contribute to this increase. New findings now show that the presenilins affect APP processing through their effects on gamma-secretase, an enzyme that cleaves APP. Also, it is known that the presenilins are involved in the cleavage of the Notch receptor, hinting that they either directly regulate gamma-secretase activity or themselves are protease enzymes. These findings suggest that the presenilins may prove to be valuable molecular targets for the development of drugs to combat AD.
- De Strooper B et al.
- A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain.
- Nature. 1999; 398: 518-22
- Display abstract
Signalling through the receptor protein Notch, which is involved in crucial cell-fate decisions during development, requires ligand-induced cleavage of Notch. This cleavage occurs within the predicted transmembrane domain, releasing the Notch intracellular domain (NICD), and is reminiscent of gamma-secretase-mediated cleavage of beta-amyloid precursor protein (APP), a critical event in the pathogenesis of Alzheimer's disease. A deficiency in presenilin-1 (PS1) inhibits processing of APP by gamma-secretase in mammalian cells, and genetic interactions between Notch and PS1 homologues in Caenorhabditis elegans indicate that the presenilins may modulate the Notch signalling pathway. Here we report that, in mammalian cells, PS1 deficiency also reduces the proteolytic release of NICD from a truncated Notch construct, thus identifying the specific biochemical step of the Notch signalling pathway that is affected by PS1. Moreover, several gamma-secretase inhibitors block this same step in Notch processing, indicating that related protease activities are responsible for cleavage within the predicted transmembrane domains of Notch and APP. Thus the targeting of gamma-secretase for the treatment of Alzheimer's disease may risk toxicity caused by reduced Notch signalling.
- Wolfe MS, De Los Angeles J, Miller DD, Xia W, Selkoe DJ
- Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease.
- Biochemistry. 1999; 38: 11223-30
- Display abstract
The amyloid-beta protein (Abeta) is strongly implicated in the pathogenesis of Alzheimer's disease. The final step in the production of Abeta from the amyloid precursor protein (APP) is proteolysis by the unidentified gamma-secretases. This cleavage event is unusual in that it apparently occurs within the transmembrane region of the substrate. Studies with substrate-based inhibitors together with molecular modeling and mutagenesis of the gamma-secretase cleavage site of APP suggest that gamma-secretases are aspartyl proteases that catalyze a novel intramembranous proteolysis. This proteolysis requires the presenilins, proteins with eight transmembrane domains that are mutated in most cases of autosomal dominant familial Alzheimer's disease. Two conserved transmembrane aspartates in presenilins are essential for gamma-secretase activity, suggesting that presenilins themselves are gamma-secretases. Moreover, presenilins also mediate the apparently intramembranous cleavage of the Notch receptor, an event critical for Notch signaling and embryonic development. Thus, if presenilins are gamma-secretases, then they are also likely the proteases that cleave Notch within its transmembrane domain. Another protease, S2P, involved in the processing of the sterol regulatory element binding protein, is also a multipass integral membrane protein which cleaves within or very close to the transmembrane region of its substrate. Thus, presenilins and S2P appear to be members of a new type of polytopic protease with an intramembranous active site.
- Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ
- Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity.
- Nature. 1999; 398: 513-7
- Display abstract
Accumulation of the amyloid-beta protein (Abeta) in the cerebral cortex is an early and invariant event in the pathogenesis of Alzheimer's disease. The final step in the generation of Abeta from the beta-amyloid precursor protein is an apparently intramembranous proteolysis by the elusive gamma-secretase(s). The most common cause of familial Alzheimer's disease is mutation of the genes encoding presenilins 1 and 2, which alters gamma-secretase activity to increase the production of the highly amyloidogenic Abeta42 isoform. Moreover, deletion of presenilin-1 in mice greatly reduces gamma-secretase activity, indicating that presenilin-1 mediates most of this proteolytic event. Here we report that mutation of either of two conserved transmembrane (TM) aspartate residues in presenilin-1, Asp 257 (in TM6) and Asp 385 (in TM7), substantially reduces Abeta production and increases the amounts of the carboxy-terminal fragments of beta-amyloid precursor protein that are the substrates of gamma-secretase. We observed these effects in three different cell lines as well as in cell-free microsomes. Either of the Asp --> Ala mutations also prevented the normal endoproteolysis of presenilin-1 in the TM6 --> TM7 cytoplasmic loop. In a functional presenilin-1 variant (carrying a deletion in exon 9) that is associated with familial Alzheimer's disease and which does not require this cleavage, the Asp 385 --> Ala mutation still inhibited gamma-secretase activity. Our results indicate that the two transmembrane aspartate residues are critical for both presenilin-1 endoproteolysis and gamma-secretase activity, and suggest that presenilin 1 is either a unique diaspartyl cofactor for gamma-secretase or is itself gamma-secretase, an autoactivated intramembranous aspartyl protease.
- Kim SS, Choi YM, Suh YH
- Lack of interactions between amyloid precursor protein and hydrophilic domains of presenilin 1 and 2 using the yeast two hybrid system.
- J Mol Neurosci. 1997; 9: 49-54
- Display abstract
Mutations in the two related genes, presenilin 1 (PS1) and presenilin 2 (PS2), which are predicted multispanning membrane proteins, are responsible for the majority of early-onset familial Alzheimer's disease (FAD). To demonstrate direct interactions between presenilins (PS) and amyloid precursor protein (APP), the authors utilized a yeast two-hybrid system. Various hydrophilic domains derived from PS and those of APP were coexpressed in yeast and tested for the interaction. No detectable interactions were found in any PS/APP set examined. The authors' studies suggest that PS and APP do not interact through their hydrophilic domains in yeast, raising the possibility that interaction may occur indirectly or require proper conformation or subunit formation.