Secondary literature sources for TBC
The following references were automatically generated.
- Huynh TT, Vad R, Kristensen T, Oyen TB
- The genes of two G-proteins involved in protein transport in Pichia pastoris.
- Biochem Biophys Res Commun. 2001; 280: 454-9
- Display abstract
Members of the Rab protein family play essential roles in vesicle fusion during protein secretion and represent highly conserved GTP binding proteins. The Saccharomyces cerevisiae Sec4p and Ypt1p, promoting vesicle fusion at the plasma membrane and in ER-Golgi transport, respectively, are among the best characterised yeast members. We have here cloned the Pichia pastoris SEC4 homologue using a S. cerevisiae SEC4 probe. In addition we isolated a crosshybridising clone encoding another Rab-/Ypt-like protein. The deduced full-length PpSec4p comprises 204 amino acid residues with an over all identity of 64% to the Sec4p from S. cerevisiae and 72% to the Candida albicans Sec4p. The YPT-like gene encodes a 216 amino acid residue protein showing highest similarity to the S. cerevisiae Ypt10p and Ypt53p. Both PpSec4p and the Ypt-like protein carry a -Cys-Cys C-terminus, indicating that these proteins are targets for geranyl-geranylation by a type II prenyltransferase. Copyright 2001 Academic Press.
- Will E, Albert S, Gallwitz D
- Expression, purification, and biochemical properties of Ypt/Rab GTPase-activating proteins of Gyp family.
- Methods Enzymol. 2001; 329: 50-8
- Du LL, Novick P
- Purification and properties of a GTPase-activating protein for yeast Rab GTPases.
- Methods Enzymol. 2001; 329: 91-9
- Reczek D, Bretscher A
- Identification of EPI64, a TBC/rabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP.
- J Cell Biol. 2001; 153: 191-206
- Display abstract
The cortical scaffolding proteins EBP50 (ERM-binding phosphoprotein-50) and E3KARP (NHE3 kinase A regulatory protein) contain two PDZ (PSD-95/DlgA/ZO-1-like) domains followed by a COOH-terminal sequence that binds to active ERM family members. Using affinity chromatography, we identified polypeptides from placental microvilli that bind the PDZ domains of EBP50. Among these are 64- and/or 65-kD differentially phosphorylated polypeptides that bind preferentially to the first PDZ domain of EBP50, as well as to E3KARP, and that we call EPI64 (EBP50-PDZ interactor of 64 kD). The gene for human EPI64 lies on chromosome 22 where nine exons specify a protein of 508 residues that contains a Tre/Bub2/Cdc16 (TBC)/rab GTPase-activating protein (GAP) domain. EPI64 terminates in DTYL, which is necessary for binding to the PDZ domains of EBP50, as a mutant ending in DTYLA no longer interacts. EPI64 colocalizes with EBP50 and ezrin in syncytiotrophoblast and cultured cell microvilli, and this localization in cultured cells is abolished by introduction of the DTYLA mutation. In addition to EPI64, immobilized EBP50 PDZ domains retain several polypeptides from placental microvilli, including an isoform of nadrin, a rhoGAP domain-containing protein implicated in regulating vesicular transport. Nadrin binds EBP50 directly, probably through its COOH-terminal STAL sequence. Thus, EBP50 appears to bind membrane proteins as well as factors potentially involved in regulating membrane traffic.
- Du LL, Novick P
- Yeast rab GTPase-activating protein Gyp1p localizes to the Golgi apparatus and is a negative regulator of Ypt1p.
- Mol Biol Cell. 2001; 12: 1215-26
- Display abstract
A family of related proteins in yeast Saccharomyces cerevisiae is known to have in vitro GTPase-activating protein activity on the Rab GTPases. However, their in vivo function remains obscure. One of them, Gyp1p, acts on Sec4p, Ypt1p, Ypt7p, and Ypt51p in vitro. Here, we present data to reveal its in vivo substrate and the role that it plays in the function of the Rab GTPase. Red fluorescent protein-tagged Gyp1p is concentrated on cytoplasmic punctate structures that largely colocalize with a cis-Golgi marker. Subcellular fractionation of a yeast lysate confirmed that Gyp1p is peripherally associated with membranes and that it cofractionates with Golgi markers. This localization suggests that Gyp1p may only act on Rab GTPases on the Golgi. A gyp1Delta strain displays a growth defect on synthetic medium at 37 degrees C. Overexpression of Ypt1p, but not other Rab GTPases, strongly inhibits the growth of gyp1Delta cells. Conversely, a partial loss-of-function allele of YPT1, ypt1-2, can suppress the growth defect of gyp1Delta cells. Furthermore, deletion of GYP1 can partially suppress growth defects associated with mutants in subunits of transport protein particle complex, a complex that catalyzes nucleotide exchange on Ypt1p. These results establish that Gyp1p functions on the Golgi as a negative regulator of Ypt1p.
- Will E, Gallwitz D
- Biochemical characterization of Gyp6p, a Ypt/Rab-specific GTPase-activating protein from yeast.
- J Biol Chem. 2001; 276: 12135-9
- Display abstract
Gyp6p from yeast belongs to the GYP family of Ypt/Rab-specific GTPase-activating proteins, and Ypt6p is its preferred substrate (Strom, M., Vollmer, P., Tan, T. J., and Gallwitz, D. (1993) Nature 361, 736-739). We have investigated the kinetic parameters of Gyp6p/Ypt6p interactions and find that Gyp6p accelerates the intrinsic GTPase activity of Ypt6p (0.0002 min(-1)) by a factor of 5 x 10(6) and that they have a very low affinity for its preferred substrate (K(m) = 592 micrometer). Substitution with alanine of several arginines, which Gyp6p shares with other GYP family members, resulted in significant inhibition of GAP activity. Replacement of arginine-155 with either alanine or lysine abolished its GAP activity, indicating a direct involvement of this strictly conserved arginine in catalysis. Physical interaction of the catalytically inactive Gyp6(R155A) mutant GAP with Ypt6 wild-type and Ypt6 mutant proteins could be demonstrated with the two-hybrid system. Short N-terminal and C-terminal truncations of Gyp6p resulted in a complete loss of GAP activity and Ypt6p binding, showing that in contrast to two other Gyp proteins studied previously, most of the 458 amino acid-long Gyp6p sequence is required to form a three-dimensional structure that allows substrate binding and catalysis.
- Albert S, Gallwitz D
- Msb4p, a protein involved in Cdc42p-dependent organization of the actin cytoskeleton, is a Ypt/Rab-specific GAP.
- Biol Chem. 2000; 381: 453-6
- Display abstract
Ypt/Rab proteins of the Ras superfamily are regulators of protein transport in exo- and endocytosis. Like Ras and Rho proteins, they have a slow intrinsic GTPase activity that can be accelerated by several orders of magnitude by GTPase-activating proteins (GAP). Here we describe a new member of a family of Ypt/Rab-specific GAPs, Msb4p/Gyp4p, that shares with other Gyp family members significant homology in the catalytic domain, recently identified in Gyp1p and Gyp7p. Purified Msb4p/Gyp4p acts primarily on Sec4p, Ypt6p and Ypt7p and might have a role in polarized secretion.
- Radcliffe PA, Vardy L, Toda T
- A conserved small GTP-binding protein Alp41 is essential for the cofactor-dependent biogenesis of microtubules in fission yeast.
- FEBS Lett. 2000; 468: 84-8
- Display abstract
The proper folding of tubulins and their incorporation into microtubules consist of a series of reactions, in which evolutionarily conserved proteins, cofactors A to E, play a vital role. We have cloned a fission yeast gene (alp41(+)) which encodes a highly conserved small GTP-binding protein homologous to budding yeast CIN4 and human ARF-like Arl2. alp41(+) is essential, disruption of which results in microtubule dysfunction and growth polarity defects. Genetic analysis indicates that Alp41 plays a crucial role in the cofactor-dependent pathway, in which it functions upstream of the cofactor D homologue Alp1(D) and possibly in concert with Alp21(E).
- Jones S, Jedd G, Kahn RA, Franzusoff A, Bartolini F, Segev N
- Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.
- Genetics. 1999; 152: 1543-56
- Display abstract
Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway.
- Cuif MH et al.
- Characterization of GAPCenA, a GTPase activating protein for Rab6, part of which associates with the centrosome.
- EMBO J. 1999; 18: 1772-82
- Display abstract
The Rab6 GTPase regulates intracellular transport at the level of the Golgi apparatus, probably in a retrograde direction. Here, we report the identification and characterization of a novel human Rab6-interacting protein named human GAPCenA (for 'GAP and centrosome-associated'). Primary sequence analysis indicates that GAPCenA displays similarities, within a central 200 amino acids domain, to both the yeast Rab GTPase activating proteins (GAPs) and to the spindle checkpoint proteins Saccharomyces cerevisiae Bub2p and Schizosaccharomyces pombe Cdc16p. We demonstrate that GAPCenA is indeed a GAP, specifically active in vitro on Rab6 and, to a lesser extent, on Rab4 and Rab2 proteins. Immunofluorescence and cell fractionation experiments showed that GAPCenA is mainly cytosolic but that a minor pool is associated with the centrosome. Moreover, GAPCenA was found to form complexes with cytosolic gamma-tubulin and to play a role in microtubule nucleation. Therefore, GAPCenA may be involved in the coordination of microtubule and Golgi dynamics during the cell cycle.
- Nakashima N, Noguchi E, Nishimoto T
- Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p.
- Genetics. 1999; 152: 853-67
- Display abstract
Prp20p and Rna1p are GDP/GTP exchanging and GTPase-activating factors of Gsp1p, respectively, and their mutations, prp20-1 and rna1-1, can both be suppressed by Saccharomyces cerevisiae gtr1-11. We found that gtr1-11 caused a single amino acid substitution in Gtr1p, forming S20L, which is a putative GDP-bound mutant protein, while Gtr1p has been reported to bind to GTP alone. Consistently, gtr1-S20N, another putative GDP-bound mutant, suppressed both prp20-1 and rna1-1. On the other hand, gtr1-Q65L, a putative GTP-bound mutant, was inhibitory to prp20-1 and rna1-1. Thus, the role that Gtr1p plays in vivo appears to depend upon the nucleotide bound to it. Our data suggested that the GTP-bound Gtr1p, but not the GDP-bound Gtr1p, interacts with itself through its C-terminal tail. S. cerevisiae possesses a novel gene, GTR2, which is homologous to GTR1. Gtr2p interacts with itself in the presence of Gtr1p. The disruption of GTR2 suppressed prp20-1 and abolished the inhibitory effect of gtr1-Q65L on prp20-1. This finding, taken together with the fact that Gtr1p-S20L is a putative, inactive GDP-bound mutant, implies that Gtr1p negatively regulates the Ran/Gsp1p GTPase cycle through Gtr2p.
- Louvet O et al.
- Characterization of the ORF YBR264c in Saccharomyces cerevisiae, which encodes a new yeast Ypt that is degraded by a proteasome-dependent mechanism.
- Mol Gen Genet. 1999; 261: 589-600
- Display abstract
We identified the ORF YBR264c during the systematic sequencing of the Saccharomyces cerevisiae genome. It encodes a putative protein of 218 amino acids. We demonstrate here that the gene is indeed expressed and encodes a new Ypt in yeast. This protein specifically binds guanine nucleotides and interacts via its C-terminal end with the unique Rab GDP Dissociation Inhibitor (RabGDI). In accordance with a recent proposal, the gene is now designated YPT10. No mutant phenotype could be associated with inactivation of the gene. However, overexpression of YPT10 resulted in defects in growth; microscopic examination of such cells revealed an overabundance of vesicular and tubular structures, suggesting some alteration in the function of the Golgi apparatus. In addition, degradation of the Ypt10 protein, which possesses a PEST sequence, is shown to be dependent on proteasome activity.
- Doignon F, Weinachter C, Roumanie O, Crouzet M
- The yeast Rgd1p is a GTPase activating protein of the Rho3 and rho4 proteins.
- FEBS Lett. 1999; 459: 458-62
- Display abstract
The RGD1 gene, identified during sequencing of the Saccharomyces cerevisiae genome, encodes a protein with a Rho-GTPase activating protein (GAP) domain at the carboxy-terminal end. The Rgd1 protein showed two-hybrid interactions with the activated forms of Rho2p, Rho3p and Rho4p. Using in vitro assays, we demonstrated that Rgd1p stimulated the GTPase activity of both Rho3p and Rho4p; no stimulation was observed on Rho2p. In addition, the rho3Deltargd1Delta double mutant exhibited a dramatic growth defect compared to the single mutants, suggesting that Rgd1p has a GAP activity in vivo. The present study allowed the identification of the first GAP of Rho3p and Rho4p.
- Vollmer P, Will E, Scheglmann D, Strom M, Gallwitz D
- Primary structure and biochemical characterization of yeast GTPase-activating proteins with substrate preference for the transport GTPase Ypt7p.
- Eur J Biochem. 1999; 260: 284-90
- Display abstract
Small GTPases of the Ypt/Rab family are regulators of vesicular protein trafficking in exo-and endocytosis. GTPase-activating proteins (GAP) play an important role as down regulators of GTPases. We here report the molecular cloning of a novel GAP-encoding gene (GYP7, for GAP for Ypt7) by high expression from a Saccharomyces cerevisiae genomic library. The GYP7 gene encodes a hydrophilic protein with a molecular mass of 87 kDa. Comparison of its primary sequence with that of the three other known GAPs for transport GTPases, the yeast Gyp6 and Gyp1 proteins and the Rab3A-GAP from rat brain, shows similarity between the yeast GAPs only. Like GYP6 and GYP1, GYP7 is not essential for yeast cell viability. Gyp7p was able to most effectively accelerate the intrinsic GTPase activity of Ypt7p. It was also active, but to a lesser extent, on Ypt31p, Ypt32p and Ypt1p. Ypt6p, Sec4p and the human H-Ras protein did not serve as substrates. We also report the identification and cloning of a gene from the dimorphic yeast Yarrowia lipolytica that encodes a protein whose primary structure and biochemical activity are significantly related to those of Gyp7p from baker's yeast.
- Borg S, Podenphant L, Jensen TJ, Poulsen C
- Plant cell growth and differentiation may involve GAP regulation of Rac activity.
- FEBS Lett. 1999; 453: 341-5
- Display abstract
Two Rac GTPase cDNAs, LjRac1 and LjRac2, were identified in the legume Lotus japonicus. Two-hybrid screening with dominant-constitutive mutations in the two Rac GTPases target three plant cDNAs, LjRacGAP1, LjRacGAP2 and LjRacGAP3, that encode putative GTPase activating proteins of Rho-GTPase subfamily members. Employing Rac antiserum, purified recombinant LjRac GTPases and recombinant LjRacGAP1, for ligand overlay assays, in vitro GAP affinity assays and GTPase activation, we confirmed that eukaryote Rac/RacGAP interplay is conserved in plants. In this investigation we have developed some tools that can be used to characterize the role of enhanced LjRac2 expression in developing root nodules.
- Albert S, Will E, Gallwitz D
- Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases.
- EMBO J. 1999; 18: 5216-25
- Display abstract
Ypt/Rab proteins constitute the largest subfamily of the Ras superfamily of monomeric GTPases and are regulators of vesicular protein transport. Their slow intrinsic GTPase activity (10(-4)-10(-3) min(-1) at 30 degrees C) has to be accelerated to switch the active to the inactive conformation. We have identified the catalytic domain within the C-terminal halves of two yeast GTPase-activating proteins (GAPs), Gyp1p and Gyp7p, with specificity for Ypt/Rab GTPases. The catalytically active fragments of Gyp1p and Gyp7p were more active than the full-length proteins and accelerated the intrinsic GTP hydrolysis rates of their preferred substrates by factors of 4.5 x 10(4) and 7.8 x 10(5), respectively. The K(m) values for the Gyp1p and Gyp7p active fragments (143 and 42 microM, respectively) indicate that the affinities of those GAPs for their substrates are very low. The catalytic domains of Gyp1p and Gyp7p contain five invariant arginine residues; substitutions of only one of them (R343 in Gyp1p and R458 in the analogous position of Gyp7p) rendered the GAPs almost completely inactive. We suggest that Ypt/Rab-GAPs, like Ras- and Rho-GAPs, follow the same mode of action and provide a catalytic arginine ('arginine finger') in trans to accelerate the GTP hydrolysis rate of the transport GTPases.
- Versele M, de Winde JH, Thevelein JM
- A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2.
- EMBO J. 1999; 18: 5577-91
- Display abstract
We have characterized a novel member of the recently identified family of regulators of heterotrimeric G protein signalling (RGS) in the yeast Saccharomyces cerevisiae. The YOR107w/RGS2 gene was isolated as a multi-copy suppressor of glucose-induced loss of heat resistance in stationary phase cells. The N-terminal half of the Rgs2 protein consists of a typical RGS domain. Deletion and overexpression of Rgs2, respectively, enhances and reduces glucose-induced accumulation of cAMP. Overexpression of RGS2 generates phenotypes consistent with low activity of cAMP-dependent protein kinase A (PKA), such as enhanced accumulation of trehalose and glycogen, enhanced heat resistance and elevated expression of STRE-controlled genes. Deletion of RGS2 causes opposite phenotypes. We demonstrate that Rgs2 functions as a negative regulator of glucose-induced cAMP signalling through direct GTPase activation of the Gs-alpha protein Gpa2. Rgs2 and Gpa2 constitute the second cognate RGS-G-alpha protein pair identified in yeast, in addition to the mating pheromone pathway regulators Sst2 and Gpa1. Moreover, Rgs2 and Sst2 exert specific, non-overlapping functions, and deletion mutants in Rgs2 and Sst2 are complemented to some extent by different mammalian RGS proteins.
- Albert S, Gallwitz D
- Two new members of a family of Ypt/Rab GTPase activating proteins. Promiscuity of substrate recognition.
- J Biol Chem. 1999; 274: 33186-9
- Display abstract
Monomeric GTPases of the Ras superfamily have a very slow intrinsic GTPase activity which is accelerated by specific GTPase-activating proteins. In contrast to Ras- and Rho-specific GTPase-activating proteins (GAPs) that have been studied in great detail, little is known about the functioning of GAPs specific for Ypt/Rab transport GTPases. We have identified two novel Ypt/Rab-GAPs because of their sequence relatedness to the three known GAPs Gyp1p, Gyp6p, and Gyp7p. Mdr1/Gyp2p is an efficient GAP for Ypt6p and Sec4p, whereas Msb3/Gyp3p is a potent GAP for Sec4p, Ypt6p, Ypt51p, Ypt31/Ypt32p, and Ypt1p. Although the affinity of Msb3/Gyp3p for its preferred substrate Sec4p is low (K(m) = 154 microM), it accelerates the intrinsic GTPase activity of Sec4p 5 x 10(5)-fold. Msb3/Gyp3p appears to be functionally linked to Cdc42p-regulated pathway(s). The results demonstrate that in yeast there is a large family of Ypt/Rab-GAPs, members of which discriminate poorly between GTPases involved in regulating different steps of exo- and endocytic transport routes.
- Park HO, Sanson A, Herskowitz I
- Localization of bud2p, a GTPase-activating protein necessary for programming cell polarity in yeast to the presumptive bud site.
- Genes Dev. 1999; 13: 1912-7
- Display abstract
Yeast cells of different cell type exhibit distinct budding patterns that reflect the organization of the actin cytoskeleton. Bud1p (Rsr1p), a Ras-like GTPase, and Bud2p, a GTPase-activating protein for Bud1p, are essential for proper budding pattern. We show that Bud2p is localized at the presumptive bud site in G(1) cells in all cell types and that this localization is independent of Bud1p. Bud2p subsequently localizes to the mother-bud neck after bud emergence; this localization depends on the integrity of the septins. These observations indicate that Bud2p becomes positioned in G(1) cells by recognizing cell type-specific landmarks at the presumptive bud site.
- Scheffzek K, Ahmadian MR, Wittinghofer A
- GTPase-activating proteins: helping hands to complement an active site.
- Trends Biochem Sci. 1998; 23: 257-62
- Display abstract
Stimulation of the intrinsic GTPase activity of GTP-binding proteins by GTPase-activating proteins (GAPs) is a basic principle of GTP-binding-protein downregulation. Recently, the molecular mechanism behind this reaction has been elucidated by studies on Ras and Rho, and their respective GAPs. The basic features involve stabilizing the existing catalytic machinery and supplementing it by an external arginine residue. This represents a novel mechanism for enzyme active-site formation.
- He X et al.
- The identification of cDNAs that affect the mitosis-to-interphase transition in Schizosaccharomyces pombe, including sbp1, which encodes a spi1p-GTP-binding protein.
- Genetics. 1998; 148: 645-56
- Display abstract
Perturbations of the spi1p GTPase system in fission yeast, caused by mutation or overexpression of several regulatory proteins, result in a unique terminal phenotype that includes condensed chromosomes, a wide medial septum, and a fragmented nuclear envelope. To identify potential regulators or targets of the spi1p GTPase system, a screen for cDNAs whose overexpression results in this terminal phenotype was conducted, and seven clones that represent three genes, named med1, med2, and med3 (mitotic exit defect), were identified. Their genetic interaction with the spi1p GTPase system was established by showing that the spi1p guanine nucleotide exchange factor mutant pim1-d1ts was hypersensitive to their overexpression. med1 encodes a homologue of the human Ran-binding protein, RanBP1, and has been renamed sbp1 (spi1-binding protein). sbp1p binds to spi1p-GTP and costimulates the GTPase-activating protein (GAP)-catalyzed GTPase activity. Cells in which sbp1p is depleted or overproduced phenocopy cells in which the balance between spi1p-GTP and spi1p-GDP is perturbed by other means. Therefore, sbp1p mediates and/or regulates the essential functions of the spi1p GTPase system. med2 and med3 encode novel fission yeast proteins that, based on our phenotypic analyses, are likely to identify additional regulators or effectors of the spi1p GTPase system.
- Hong SJ, Yi YS, Koh SS, Park OK, Kang HS
- Isolation of an extragenic suppressor of the rna1-1 mutation in Saccharomyces cerevisiae.
- Mol Gen Genet. 1998; 259: 404-13
- Display abstract
The small GTPase Ran is essential for nucleocytoplasmic transport of macromolecules. In the yeast Saccharomyces cerevisiae, Rna1p functions as a Ran-GTPase activating protein (RanGAP1). Strains carrying the rna1-1 mutation exhibit defects in nuclear transport and, as a consequence, accumulate precursor tRNAs. We have isolated two recessive suppressors of the rna1-1 mutation. Further characterization of one of the suppressor mutations, srn10-1, reveals that the mutation (i) can not bypass the need for Rna1p function and (ii) suppresses the accumulation of unspliced pre-tRNA caused by rna1-1. The SRN10 gene is not essential for cell viability and encodes an acidic protein (pI = 5.27) of 24.8 kDa. Srn10p is located in the cytoplasm, as determined by indirect immunofluorescence microscopy. Two-hybrid analysis reveals that there is a physical interaction between Srn10p and Rna1p in vivo. Our results identify a protein that interacts with the yeast RanGAP1.
- Calmels TP et al.
- Sequence and 3D structural relationships between mammalian Ras- and Rho-specific GTPase-activating proteins (GAPs): the cradle fold.
- FEBS Lett. 1998; 426: 205-11
- Display abstract
An extensive study of both sequence and recent 3D structural data concerning GTPase interacting domains of Ras- and Rho-specific GTPase-activating proteins (GAPs) shows that these two subfamilies share a same 3D scaffold and are thus related to each other. This relationship has heretofore remained undetected although these domains of similar size are both totally alpha-helical and activate nearly structurally identical targets (Ras and Rho proteins). In this report, sequence similarities correlated to 3D structures of p120rasGAP and p50rhoGAP were detected using the sensitive two-dimensional method hydrophobic cluster analysis (HCA). These patterns were further extended to other members in each subfamily and the geometry orientation of crucial arginines R789 in p120 and R282 in p50 and of important stabilizing residues like p120R903 and p50N391 was confirmed. This overall structural relationship is centered on an invariant motif of three consecutive helices that we suggest to name the 'cradle fold'. This observation opens new perspectives to understand how small GTPases are specifically regulated.
- Shiomi T, Fukushima K, Suzuki N, Nakashima N, Noguchi E, Nishimoto T
- Human dis3p, which binds to either GTP- or GDP-Ran, complements Saccharomyces cerevisiae dis3.
- J Biochem (Tokyo). 1998; 123: 883-90
- Display abstract
Saccharomyces cerevisiae Dis3p, which interacts with Ran/Gsp1p, complements Schizosaccharomyces pombe dis3-54. Consistent with the functional conservation of Dis3p in S. cerevisiae and S. pombe, the human ORF (accession number: R27667) was found to be highly homologous to yeast Dis3p. Based on its nucleotide sequence, we cloned a full-sized human DIS3 cDNA. The cloned human cDNA partly but significantly restored the temperature-sensitivity of S. cerevisiae dis3. Thus, Dis3p was found to be structurally and functionally conserved from yeast to mammals. Consistent with the report that S. cerevisiae Dis3p is identical to Rrp44p, which comprises the exosome involved in ribosomal RNA processing, S. cerevisiae Dis3p was found to be localized in the nucleolus. Similar to S. cerevisiae Dis3p, human Dis3p enhanced RCC1-stimulated nucleotide release from Ran, in a dose-dependent manner, and bound to GTP- or GDP-Ran.
- Jones S, Richardson CJ, Litt RJ, Segev N
- Identification of regulators for Ypt1 GTPase nucleotide cycling.
- Mol Biol Cell. 1998; 9: 2819-37
- Display abstract
Small GTPases of the Ypt/Rab family are involved in the regulation of vesicular transport. Cycling between the GDP- and GTP-bound forms and the accessory proteins that regulate this cycling are thought to be crucial for Ypt/Rab function. Guanine nucleotide exchange factors (GEFs) stimulate both GDP loss and GTP uptake, and GTPase-activating proteins (GAPs) stimulate GTP hydrolysis. Little is known about GEFs and GAPs for Ypt/Rab proteins. In this article we report the identification and initial characterization of two factors that regulate nucleotide cycling by Ypt1p, which is essential for the first two steps of the yeast secretory pathway. The Ypt1p-GEF stimulates GDP release and GTP uptake at least 10-fold and is specific for Ypt1p. Partially purified Ypt1p-GEF can rescue the inhibition caused by the dominant-negative Ypt1p-D124N mutant of in vitro endoplasmic reticulum-to-Golgi transport. This mutant probably blocks transport by inhibiting the GEF, suggesting that we have identified the physiological GEF for Ypt1p. The Ypt1p-GAP stimulates GTP hydrolysis by Ypt1p up to 54-fold, has a higher affinity for the GTP-bound form of Ypt1p than for the GDP-bound form, and is specific to a subgroup of exocytic Ypt proteins. The Ypt1p-GAP activity is not affected by deletion of two genes that encode known Ypt GAPs, GYP7 and GYP1, nor is it influenced by mutations in SEC18, SEC17, or SEC22, genes whose products are involved in vesicle fusion. The GEF and GAP activities for Ypt1p localize to particulate cellular fractions. However, contrary to the predictions of current models, the GEF activity localizes to the fraction that functions as the acceptor in an endoplasmic reticulum-to-Golgi transport assay, whereas the GAP activity cofractionates with markers for the donor. On the basis of our current and previous results, we propose a new model for the role of Ypt/Rab nucleotide cycling and the factors that regulate this process.
- Saito Y, Kimura K, Oka T, Nakano A
- Activities of mutant Sar1 proteins in guanine nucleotide binding, GTP hydrolysis, and cell-free transport from the endoplasmic reticulum to the Golgi apparatus.
- J Biochem (Tokyo). 1998; 124: 816-23
- Display abstract
Sar1p belongs to a unique subfamily of the small GTPase superfamily and is essential for the formation of vesicles that transport proteins from the endoplasmic reticulum to the Golgi apparatus. We have obtained mutants of the yeast SAR1 gene, which show several different phenotypes in cell growth and protein transport [Nakano, A. , Otsuka, H., Yamagishi, M., Yamamoto, E., Kimura, K., Nishikawa, S., and Oka, T. (1994) J. Biochem. 116, 243-247; Yamanushi, T., Hirata, A., Oka, T., and Nakano, A. (1996) ibid. 120, 452-458]. In this study, we have purified five mutant Sar1 proteins using an Escherichia coli expression system and characterized their biochemical properties in detail. Three of them prefer GDP binding to GTP binding and are thus regarded as GDP-form mutants, and one is insensitive to the GTPase-activating protein and is almost fixed in the GTP-bound state. The GDP mutants are defective in vesicle formation in vitro, whereas the GTP mutant can drive vesicle formation but not the overall transport to the Golgi. These mutants will be useful for further understanding of the regulation of the GTPase cycle of Sar1p.
- Lippincott J, Li R
- Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis.
- J Cell Biol. 1998; 140: 355-66
- Display abstract
We have identified a Saccharomyces cerevisiae protein, Cyk1p, that exhibits sequence similarity to the mammalian IQGAPs. Gene disruption of Cyk1p results in a failure in cytokinesis without affecting other events in the cell cycle. Cyk1p is diffused throughout most of the cell cycle but localizes to a ring structure at the mother-bud junction after the initiation of anaphase. This ring contains filamentous actin and Myo1p, a myosin II homologue. In vivo observation with green fluorescent protein-tagged Myo1p showed that the ring decreases drastically in size during cell division and therefore may be contractile. These results indicate that cytokinesis in budding yeast is likely to involve an actomyosin-based contractile ring. The assembly of this ring occurs in temporally distinct steps: Myo1p localizes to a ring that overlaps the septins at the G1-S transition slightly before bud emergence; Cyk1p and actin then accumulate in this ring after the activation of the Cdc15 pathway late in mitosis. The localization of myosin is abolished by a mutation in Cdc12p, implicating a role for the septin filaments in the assembly of the actomyosin ring. The accumulation of actin in the cytokinetic ring was not observed in cells depleted of Cyk1p, suggesting that Cyk1p plays a role in the recruitment of actin filaments, perhaps through a filament-binding activity similar to that demonstrated for mammalian IQGAPs.
- Liu K, Li G
- Catalytic domain of the p120 Ras GAP binds to RAb5 and stimulates its GTPase activity.
- J Biol Chem. 1998; 273: 10087-90
- Display abstract
Ras is a master GTPase switch controlling multiple signal transduction cascades in the regulation of cell proliferation and differentiation. Rab5 is a local GTPase switch that is localized on early endosomes and controls early endosome fusion. This study demonstrates that the catalytic domain of p120 GTPase-activating protein (GAP), a well known Ras GAP, is able to interact physically with Rab5 and stimulate its GTPase activity. This GAP activity toward Rab5, however, cannot be extended to other Rab GTPases such as Rab3, Rab4, and Rab6, indicating that it is not a generic GAP for the Rab family of GTPases that regulate intracellular membrane fusion during endocytosis and exocytosis. The findings indicate a level of structural similarity between Ras and Rab5 unexpected from their primary sequences. They also suggest a possible signal transduction regulation of the Rab5-dependent endosome fusion via the Ras GAP.
- Toure A et al.
- MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells.
- J Biol Chem. 1998; 273: 6019-23
- Display abstract
In a search for new partners of the activated form of Rac GTPase, we have isolated through a two-hybrid cloning procedure a human cDNA encoding a new GTPase-activating protein (GAP) for Rho family GTPases. A specific mRNA of 3.2 kilobases was detected in low abundance in many cell types and found highly expressed in testis. A protein of the predicted size 58 kDa, which we call MgcRacGAP, was detected in human testis as well as in germ cell tumor extracts by immunoblotting with antibodies specific to recombinant protein. In vitro, the GAP domain of MgcRacGAP strongly stimulates Rac1 and Cdc42 GTPase activity but is almost inactive on RhoA. N-terminal to its GAP domain, MgcRacGAP contains a cysteine-rich zinc finger-like motif characteristic of the Chimaerin family of RhoGAPs. The closest homolog of MgcRacGAP is RotundRacGAP, a product of the Drosophila rotund locus. In situ hybridization experiments in human testis demonstrate a specific expression of mgcRacGAP mRNA in spermatocytes similar to that of rotundRacGAP in Drosophila testis. Therefore, protein sequence similarity and analogous developmental and tissue specificities of gene expression support the hypothesis that RotundRacGAP and MgcRacGAP have equivalent functions in insect and mammalian germ cells. Since rotundRacGAP deletion leads to male sterility in the fruit fly, the mgcRacGAP gene may prove likewise to play a key role in mammalian male fertility.
- Davis K, Davey J
- G-protein-coupled receptors for peptide hormones in yeast.
- Biochem Soc Trans. 1997; 25: 1015-21
- Walch-Solimena C, Collins RN, Novick PJ
- Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles.
- J Cell Biol. 1997; 137: 1495-509
- Display abstract
The small GTPase Sec4p is required for vesicular transport at the post-Golgi stage of yeast secretion. Here we present evidence that mutations in SEC2, itself an essential gene that acts at the same stage of the secretory pathway, cause Sec4p to mislocalize as a result of a random rather than a polarized accumulation of vesicles. Sec2p and Sec4p interact directly, with the nucleotide-free conformation of Sec4p being the preferred state for interaction with Sec2p. Sec2p functions as an exchange protein, catalyzing the dissociation of GDP from Sec4 and promoting the binding of GTP. We propose that Sec2p functions to couple the activation of Sec4p to the polarized delivery of vesicles to the site of exocytosis.
- Graham DL, Eccleston JF, Lowe PN
- Characterisation of the interaction of normal and mutant Rho-GAP with Rho family proteins.
- Biochem Soc Trans. 1997; 25: 512-512
- Epp JA, Chant J
- An IQGAP-related protein controls actin-ring formation and cytokinesis in yeast.
- Curr Biol. 1997; 7: 921-9
- Display abstract
BACKGROUND: Proteins of the IQGAP family have been identified as candidate effectors for the Rho family of GTPases; however, little is known about their cellular functions. The domain structures of IQGAP family members make them excellent candidates as regulators of the cytoskeleton: their sequences include an actin-binding domain homologous to that found in calponin, IQ motifs for interaction with calmodulin, and a GTPase-binding domain. RESULTS: The genomic sequence of Saccharomyces cerevisiae revealed a single gene encoding an IQGAP family member (denoted IQGAP-related protein: Iqg1). Iqg1 and IQGAPs share similarity along their entire length, with an amino-terminal calponin-homology (CH) domain, IQ repeats, and a conserved carboxyl terminus. In contrast to IQGAPs, Iqg1 lacks an identifiable GAP motif, a WW domain, and IR repeats, although the functions of these domains in IQGAPs are not well defined. Deletion of the IQG1 gene resulted in lethality. Cellular defects included a deficiency in cytokinesis, altered actin organization, aberrant nuclear segregation, and cell lysis. The primary defect appeared to be a cytokinesis defect, and the other problems possibly arose as a consequence of this initial defect. Consistent with a role in cytokinesis, Iqg1 co-localizes with an actin ring encircling the mother-bud neck late in the cell cycle -a putative cytokinetic ring. IQG1 overexpression resulted in premature actin-ring formation, suggesting that Iqg1 activity temporally controls formation of this structure during the cell cycle. CONCLUSIONS: Yeast IQGAP-related protein, Iqg1, is an important regulator of cellular morphogenesis, inducing actin-ring formation in association with cytokinesis.
- Konig P, Rhodes D
- Recognition of telomeric DNA.
- Trends Biochem Sci. 1997; 22: 43-7
- Display abstract
The three-dimensional structure of the yeast telomere-binding protein RAP1 in complex with DNA provides the first insight into telomeric DNA recognition. RAP1 binds to DNA via two Myb/homeodomain-like motifs, which are DNA-binding folds previously identified in transcription factors. This, together with the finding that human TRF1 and other telomere-binding factors contain Myb-like motifs, has led us to speculate that a conserved protein fold might be used for telomeric DNA recognition.
- Mirbod F, Nakashima S, Kitajima Y, Cannon RD, Nozawa Y
- Molecular cloning of a Rho family, CDC42Ca gene from Candida albicans and its mRNA expression changes during morphogenesis.
- J Med Vet Mycol. 1997; 35: 173-9
- Display abstract
The small GTP-binding protein family regulates various cell functions in mammalian and yeast cells. In the yeast Saccharomyces cerevisiae it has been known to be involved in vegetative growth. As an initial attempt to explore the involvement of CDC42, a member of this family, in the regulation of morphological changes in Candida albicans, we isolated a gene encoding this protein (CDC42Ca) from this fungus. The sequence of isolated gene revealed an open reading frame of 570 nucleotides with the potential to encode a protein of 190 amino acids with a predicted molecular weight of 20.5 kDa. The deduced amino acid sequence was highly homologous to CDC42s from yeast (87.8%), human (76.4%) and Caenorhabditis elegans (73.7%). The CDC42Ca mRNA level showed a transient increase with a peak at 2 h after the fresh medium shift (28 degrees C) when cells synchronously formed buds, whereas it displayed a gradual increase up to 12 h after the medium shift (37 degrees C) with elongation of germ tubes. This suggests that CDC42 may play a role in the bud emergence and also germ tube formation in C. albicans.
- Chen GC, Zheng L, Chan CS
- The LIM domain-containing Dbm1 GTPase-activating protein is required for normal cellular morphogenesis in Saccharomyces cerevisiae.
- Mol Cell Biol. 1996; 16: 1376-90
- Display abstract
Normal cell growth in the yeast Saccharomyces cerevisiae involves the selection of genetically determined bud sites where most growth is localized. Previous studies have shown that BEM2, which encodes a GTPase-activating protein (GAP) that is specific for the Rho-type GTPase Rho1p in vitro, is required for proper bud site selection and bud emergence. We show here that DBM1, which encodes another putative Rho-type GAP with two tandemly arranged cysteine-rich LIM domains, also is needed for proper bud site selection, as haploid cells lacking Dbm1p bud predominantly in a bipolar, rather than the normal axial, manner. Furthermore, yeast cells lacking both Bem2p and Dbm1p are inviable. The nonaxial budding defect of dbm1 mutants can be rescued partially by overproduction of Bem3p and is exacerbated by its absence. Since Bem3p has previously been shown to function as a GAP for Cdc42p, and also less efficiently for Rho1p, our results suggest that Dbm1p, like Bem2p and Bem3p, may function in vivo as a GAP for Cdc42p and/or Rho1p. Both LIM domains of Dbm1p are essential for its normal function. Point mutations that alter single conserved cysteine residues within either LIM domain result in mutant forms of Dbm1p that can no longer function in bud site selection but instead are capable of rescuing the inviability of bem2 mutants at 35 degrees C.
- Bi E, Pringle JR
- ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae.
- Mol Cell Biol. 1996; 16: 5264-75
- Display abstract
A genetic screen for GTPase-activating proteins (GAPs) or other negative regulators of the Rac/Rho family GTPase Cdc42p in Saccharomyces cerevisiae identified ZDS1, a gene encoding a protein of 915 amino acids. Sequence from the yeast genome project identified a homolog, ZDS2, whose predicted product of 942 amino acids is 38% identical in sequence to Zds1p. Zds1p and Zds2p have no detectable homology to known Rho-GAPs or to other known proteins. However, by several assays, it appears that overexpression of either Zds1p or Zds2p decreases the level of Cdc42p activity. Deletion analysis also suggests that Zds1p and Zds2p are at least partially overlapping in function. Deletion of ZDS2 produced no obvious phenotype, and deletion of ZDS1 produced no obvious phenotype other than a mild effect on cell shape. However, the zds1 zds2 double mutant grew slowly with an apparent mitotic delay and produced elongated cells and buds with other evidence of abnormal morphogenesis. A glutathione S-transferase-Zds1p fusion protein that fully complemented the double mutant localized to presumptive bud sites and the tips of small buds. The similarity of this localization to that of Cdc42p suggests that Zds1p may interact directly with Cdc42p. As ZDS1 and ZDS2 have recently been identified also by numerous other groups studying a wide range of biological phenomena, the roles of Cdc42p in intracellular signaling may be more diverse than has previously been appreciated.
- Bauer BE, Lorenzetti S, Miaczynska M, Bui DM, Schweyen RJ, Ragnini A
- Amino- and carboxy-terminal domains of the yeast Rab escort protein are both required for binding of Ypt small G proteins.
- Mol Biol Cell. 1996; 7: 1521-33
- Display abstract
The Rab escort protein (REP) is an essential component of the heterotrimeric enzyme Rab geranylgeranyl transferase that modifies the carboxy-terminal cysteines of the Ras-like small G proteins belonging to the Rab/Ypt family. Deletions in the human CHM locus, encoding one of the two REPs known in humans, result in a retinal degenerative syndrome called choroideremia. The only known yeast homologue of the choroideremia gene product is encoded by an essential gene called MRS6. Besides three structurally conserved regions (SCRs) previously detected in the amino-terminal half of REPs and RabGDIs, three other regions in the carboxy-terminal domain (RCR 1-3) are here identified as being characteristic of REPs alone. We have performed the first mutational analysis of a REP protein to experimentally define the regions functionally important for Rab/Ypt protein binding, making use of the genetic system of the yeast Saccharomyces cerevisiae. This analysis has shown that the SCRs are necessary but not sufficient for Ypt1p binding by the yeast REP, the carboxy-terminal region also being required.
- Shore D
- The means to bind the ends.
- Nat Struct Biol. 1996; 3: 491-3
- Ueda T, Matsuda N, Anai T, Tsukaya H, Uchimiya H, Nakano A
- An Arabidopsis gene isolated by a novel method for detecting genetic interaction in yeast encodes the GDP dissociation inhibitor of Ara4 GTPase.
- Plant Cell. 1996; 8: 2079-91
- Display abstract
The Arabidopsis Ara proteins belong to the Rab/Ypt family of small GTPases, which are implicated in intracellular vesicular traffic. To understand their specific roles in the cell, it is imperative to identify molecules that regulate the GTPase cycle. Such molecules have been found and characterized in animals and yeasts but not in plants. Using a yeast system, we developed a novel method of functional screening to detect interactions between foreign genes and identified this Rab regulator in plants. We found that the expression of the ARA4 gene in yeast ypt mutants causes exaggeration of the mutant phenotype. By introducing an Arabidopsis cDNA library into the ypt1 mutant, we isolated a clone whose coexpression overcame the deleterious effect of ARA4. This gene encodes an Arabidopsis homolog of the Rab GDP dissociation inhibitor (GDI) and was named AtGDI1. The expression of AtGDI1 complemented the yeast sec19-1 (gdi1) mutation. AtGDI1 is expressed almost ubiquitously in Arabidopsis tissues. The method described here indicates the physiological interaction of two plant molecules, Ara4 and GDI, in yeast and should be applicable to other foreign genes.
- Horazdovsky BF, Cowles CR, Mustol P, Holmes M, Emr SD
- A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization.
- J Biol Chem. 1996; 271: 33607-15
- Display abstract
Genetic analyses of vacuolar protein sorting in Saccharomyces cerevisiae have uncovered a large number of mutants (vps) that missort and secrete soluble vacuolar hydrolases. Here we report the characterization of the gene product affected in one of these mutants, Vps8p. Polyclonal antiserum raised against a trpE-Vps8 fusion protein specifically detects a 134-kDa protein in labeled yeast cell extracts. Subcellular fractionation studies demonstrate that Vps8p is distributed between a low speed membrane pellet fraction and a high speed membrane pellet fraction. The lack of a hydrophobic domain in Vps8p suggests that Vps8p peripherally associates with a membrane(s). This association was found to depend on the function of Vps21p, a member of the Rab/Ypt/Sec4 family of small GTPases. In vps21 null mutant cells, Vps8p is found in the cytosol. In addition, overexpression of Vps21p partially suppresses a vps8 null mutant, indicating that Vps8p and Vps21p functionally interact. Vps8p contains a C-terminal cysteine-rich region that conforms to the H2 variant of the RING finger Zn2+ binding motif. Truncation of this C-terminal region partially compromises Vps8p function. While vps8 null mutant strains missort and secrete soluble vacuolar hydrolases, the integral vacuolar membrane protein, alkaline phosphatase (ALP), is sorted to the vacuole and matured normally. In addition, when vps8 mutants are combined with endocytic or late secretory pathway mutants (end3 or sec1, respectively), ALP is still delivered to the vacuole. These observations indicate that ALP is sorted to the vacuole in a Vps8p-independent manner, possibly via an alternative vesicle carrier.
- Poon PP et al.
- Saccharomyces cerevisiae Gcs1 is an ADP-ribosylation factor GTPase-activating protein.
- Proc Natl Acad Sci U S A. 1996; 93: 10074-7
- Display abstract
Movement of material between intracellular compartments takes place through the production of transport vesicles derived from donor membranes. Vesicle budding that results from the interaction of cytoplasmic coat proteins (coatomer and clathrin) with intracellular organelles requires a type of GTP-binding protein termed ADP-ribosylation factor (ARF). The GTPase cycle of ARF proteins that allows the uncoating and fusion of a transport vesicle with a target membrane is mediated by ARF-dependent GTPase-activating proteins (GAPs). A previously identified yeast protein, Gcs1, exhibits structural similarity to a mammalian protein with ARF-GAP activity in vitro. We show herein that the Gcs1 protein also has ARF-GAP activity in vitro using two yeast Arf proteins as substrates. Furthermore, Gcs1 function is needed for the efficient secretion of invertase, as expected for a component of vesicle transport. The in vivo role of Gcs1 as an ARF GAP is substantiated by genetic interactions between mutations in the ARF1/ARF2 redundant pair of yeast ARF genes and a gcs1-null mutation; cells lacking both Gcs1 and Arf1 proteins are markedly impaired for growth compared with cells missing either protein. Moreover, cells with decreased levels of Arf1 or Arf2 protein, and thus with decreased levels of GTP-Arf, are markedly inhibited for growth by increased GCS1 gene dosage, presumably because increased levels of Gcs1 GAP activity further decrease GTP-Arf levels. Thus by both in vitro and in vivo criteria, Gcs1 is a yeast ARF GAP.
- Vollmer P, Gallwitz D
- High expression cloning, purification, and assay of Ypt-GTPase-activating proteins.
- Methods Enzymol. 1995; 257: 118-28
- Ishioka C et al.
- A functional assay for heterozygous mutations in the GTPase activating protein related domain of the neurofibromatosis type 1 gene.
- Oncogene. 1995; 10: 841-7
- Display abstract
The GTPase-activating protein related domain of the human neurofibromatosis type 1 protein (NF1GRD) can down-regulate RAS in Saccharomyces cerevisiae. Using a technique termed the FASAY method, for Functional Analysis of Separated Alleles in Yeast, we designed a rapid method for detection of heterozygous NF1GRD loss-of-function mutations. In our method, PCR amplified NF1GRD cDNA is directly cloned into a centromeric vector by homologous recombination in a cdc25 temperature-sensitive mutant strain expressing human Ha-ras. This strain is dependent on the Ha-ras for growth, allowing a simple growth assay for NF1GRD loss-of-function mutations. In a test of our method, two alternatively spliced NF1GRD cDNAs (type I and II) inhibited yeast growth whereas four mutants with amino acid substitutions at highly conserved residues did not. This simple method thus permits the rapid screening for heterozygous germline or somatic NF1GRD mutations. In an initial application of this method, no mutations disrupting NF1GRD function were detected in lymphoblasts from 11 previously untested neurofibromatosis type 1 patients.
- Pertuiset B, Beckerich JM, Gaillardin C
- Molecular cloning of Rab-related genes in the yeast Yarrowia lipolytica. Analysis of RYL1, an essential gene encoding a SEC4 homologue.
- Curr Genet. 1995; 27: 123-30
- Display abstract
Small GTP-binding proteins of the Rab family are involved in the vesicular traffic inside eukaryotic cells. A gene library from the yeast Yarrowia lipolytica was screened with an oligonucleotide deduced from a highly conserved sequence in the Rab family. Four different genes were isolated. One of them, RYL1, was shown to be essential for cell viability. RYL1p displayed a high similarity with and tight phylogenetic relationships to SEC4p. When placed under the control of the GAL10 promoter, RYL1 was able to specifically relieve the thermosensitivity of a sec4-8 mutant of Saccharomyces cerevisiae. Therefore, it is proposed that RYL1 is a functional homologue of the S. cerevisiae SEC4 gene and is involved in the fusion of secretory vesicles with the plasma membrane in the general protein secretion pathway.
- Aspenstrom P, Olson MF
- Yeast two-hybrid system to detect protein-protein interactions with Rho GTPases.
- Methods Enzymol. 1995; 256: 228-41
- Cullen PJ et al.
- Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family.
- Nature. 1995; 376: 527-30
- Display abstract
Inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) is produced rapidly from inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) in stimulated cells. Despite extensive experimentation, no clearly defined cellular function has yet been described for this inositol phosphate. Binding sites specific for Ins(1,3,4,5)P4 have been identified in several tissues, and we have purified one such protein to homogeneity. Its high affinity for Ins(1,3,4,5)P4, and its exquisite specificity for this isomeric configuration, suggest it may be an Ins(1,3,4,5)P4 receptor. Here we report the cloning and characterization of this protein as a GTPase-activating protein, specifically a member of the GAP1 family. In vitro it shows GAP activity against both Rap and Ras, but only the Ras GAP activity is inhibited by phospholipids and is specifically stimulated by Ins(1,3,4,5)P4.
- Zhu J, Reynet C, Caldwell JS, Kahn CR
- Characterization of Rad, a new member of Ras/GTPase superfamily, and its regulation by a unique GTPase-activating protein (GAP)-like activity.
- J Biol Chem. 1995; 270: 4805-12
- Display abstract
We have recently identified a new member of the Ras/GTPase superfamily termed Rad which has unique sequence features and is overexpressed in the skeletal muscle of humans with type II diabetes (Reynet, C., and Kahn, C. R. (1993) Science, 262, 1441-1444). When expressed in bacteria as a glutathione S-transferase fusion protein, Rad bound [alpha-32P]GTP quickly and saturably. Binding was specific for guanine nucleotides and displayed unique magnesium dependence such that both GTP and GDP binding were optimal at relatively high Mg2+ concentrations (1-10 mM). Rad had low intrinsic GTPase activity which was greatly enhanced by a GTPase-activating protein (GAP) activity present in various tissues and cell lines. Several known GAPs had no stimulatory effect toward Rad. Conversion of Ser to Asn at position 66 in Rad (equivalent to position 12 in Ras) resulted in a total loss of GTP binding. Mutation of Pro61 (equivalent to Gly12 in Ras) or Gln109 (equivalent to Gln61 in Ras) had no effect on Rad GTPase activity, whereas creation of a double mutation at these positions resulted in exceptionally high intrinsic GTPase activity. In vitro, Rad was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (PK). Phosphopeptide mapping indicated two PKA phosphorylation sites near the COOH terminus. Rad also co-precipitated a serine/threonine kinase activity from extracts of various tissues and cell lines which catalyzed phosphorylation on Rad but was not inhibited by PKA inhibitor. Thus, Rad is a GTP-binding protein and a GTPase which has some structure/function similarities to Ras, but displays unique features. Rad may also be phosphorylated on serine/threonine residues by PKA and other kinases, as well as regulated by its own GAP which is present in many tissues and cell types.
- Onozawa T, Danjoh I, Fujiyama A
- Biochemical similarity of Schizosaccharomyces pombe ras1 protein with RAS2 protein of Saccharomyces cervisiae.
- Yeast. 1995; 11: 801-8
- Display abstract
Schizosaccharomyces pombe contains single ras oncogene homologue, ras1, that functions in the signal transduction pathway conducting the cell's mating processes. To understand the biochemical basis of yeast ras proteins, we have purified the ras1 protein and compared the major biochemical constants with those of RAS2 protein from Saccharomyces cerevisiae and mammalian ras proteins. The purified ras1 protein showed a remarkably high Kd value for GDP binding (178 nM) and for binding with ATP. In contrast, the Kd value for GTP binding and the rate of GTPase activity were 64 nM and 77 x 10(-6) s-1 at 37 degrees C, respectively; both were higher than normal p21ras protein, but at the same level as the RAS2 protein. We directly measured rate of GTP binding and GDP binding which were 3.9 x 10(-3) s-1 and 1.8 x 10(-3) s-1 at 30 degrees C, respectively. On the other hand, exchange rates between bound and free nucleotides remained almost constant throughout the tested combination of GTP and GDP, and were several-fold lower than the binding rate. These results suggest that the release of the guanine nucleotide is the rate-limiting step in the ras-GTP/GDP cycle. As a whole, the biochemical properties of the ras1 protein are close to those of the RAS2 protein, although these two proteins function differently in the signal transduction pathway in the cells.
- Muller L, Xu G, Wells R, Hollenberg CP, Piepersberg W
- LRG1 is expressed during sporulation in Saccharomyces cerevisiae and contains motifs similar to LIM and rho/racGAP domains.
- Nucleic Acids Res. 1994; 22: 3151-4
- Display abstract
We here report the sequence of a yeast gene LRG1 whose deduced amino acid sequence contains sequence motifs similar to LIM domain proteins in the amino-terminal, and to rho/rac GTPase activating proteins (rho/racGAP's) in the carboxy-terminal part. LRG1 expression is differentially regulated showing a peak of expression in sporulating cells. Gene disruption experiments indicate that the gene is not essential and may play a role during mating.
- Kim YJ, Francisco L, Chen GC, Marcotte E, Chan CS
- Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation.
- J Cell Biol. 1994; 127: 1381-94
- Display abstract
The IPL2 gene is known to be required for normal polarized cell growth in the budding yeast Saccharomyces cerevisiae. We now show that IPL2 is identical to the previously identified BEM2 gene. bem2 mutants are defective in bud site selection at 26 degrees C and localized cell surface growth and organization of the actin cytoskeleton at 37 degrees C. BEM2 encodes a protein with a COOH-terminal domain homologous to sequences found in several GTPase-activating proteins, including human Bcr. The GTPase-activating protein-domain from the Bem2 protein (Bem2p) or human Bcr can functionally substitute for Bem2p. The Rho1 and Rho2 GTPases are the likely in vivo targets of Bem2p because bem2 mutant phenotypes can be partially suppressed by increasing the gene dosage of RHO1 or RHO2. CDC55 encodes the putative regulatory B subunit of protein phosphatase 2A, and mutations in BEM2 have previously been identified as suppressors of the cdc55-1 mutation. We show here that mutations in the previously identified GRR1 gene can suppress bem2 mutations. grr1 and cdc55 mutants are both elongated in shape and cold-sensitive for growth, and cells lacking both GRR1 and CDC55 exhibit a synthetic lethal phenotype. bem2 mutant phenotypes also can be suppressed by the SSD1-vl (also known as SRK1) mutation, which was shown previously to suppress mutations in the protein phosphatase-encoding SIT4 gene. Cells lacking both BEM2 and SIT4 exhibit a synthetic lethal phenotype even in the presence of the SSD1-v1 suppressor. These genetic interactions together suggest that protein phosphorylation and dephosphorylation play an important role in the BEM2-mediated process of polarized cell growth.
- Peterson J, Zheng Y, Bender L, Myers A, Cerione R, Bender A
- Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.
- J Cell Biol. 1994; 127: 1395-406
- Display abstract
The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases.
- Ahmed S et al.
- Breakpoint cluster region gene product-related domain of n-chimaerin. Discrimination between Rac-binding and GTPase-activating residues by mutational analysis.
- J Biol Chem. 1994; 269: 17642-8
- Display abstract
The breakpoint cluster region gene product (Bcr) is a GTPase-activating protein (GAP) for members of the Rho family, Cdc42Hs, and Rac1, as is the brain protein n-chimaerin. At least 15 proteins have sequence identity to the GAP domain (150 amino acid residues) of Bcr. The widespread occurrence of proteins that possess sequence identity to the Bcr-related GAP domain makes it especially important to understand its structure/function relationships. Amino acid sequence alignment of these proteins reveals three blocks of conservation in the GAP domain. Here, we present a mutational analysis of this domain using n-chimaerin sequences. Ten mutations were constructed (at least two in each of the blocks of conservation), expressed as glutathione S-transferase fusion proteins in Escherichia coli, and purified. Seven of the mutants, including deletions, still possessed GAP activity for Rac1. Three of the mutants had no Rac1-GAP activity but were still able to bind Rac1. IC50 values obtained from competition experiments suggest that n-chimaerin and the mutants with no GAP activity bound Rac1 with similar apparent binding constants. Thus, this mutant analysis allows discrimination between Rac1-binding and Rac1 GTPase- activating residues.
- Jiang Y, Ferro-Novick S
- Identification of yeast component A: reconstitution of the geranylgeranyltransferase that modifies Ypt1p and Sec4p.
- Proc Natl Acad Sci U S A. 1994; 91: 4377-81
- Display abstract
Members of a large family of small GTP-binding proteins, termed Rabs in mammalian cells or Ypt and Sec4 in yeast, regulate vesicular traffic in all eukaryotic cells. These proteins are able to bind to membranes because they are modified by the type II geranylgeranyltransferase (GGTase-II), a multisubunit complex. Component A, encoded by the choroideremia gene in humans, is an escort protein that brings Rabs to component B, the catalytic alpha/beta heterodimer. Mutations in the catalytic subunits of the yeast GGTase-II (Bet2p/Mad2p) disrupt the membrane attachment of Ypt1p and Sec4p and this in turn blocks membrane traffic. In mammalian cells, deletions in choroideremia lead only to retinal degeneration, even though GGTase-II activity is defective. The yeast MRS6 gene encodes a protein that is approximately 30% identical to the choroideremia gene product. Here we show that the addition of recombinant Mrs6p to bacterially expressed Bet2p (beta subunit) and Mad2p (alpha subunit) reconstitutes GGTase-II activity in vitro, demonstrating that Mrs6p is yeast component A. Like Bet2p and Mad2p, Mrs6p is required for the membrane attachment of Ypt1p and Sec4p in vivo. In contrast to what has been observed before for the loss of function of the choroideremia gene, the depletion of Mrs6p from yeast cells blocks vesicular transport. Thus, these findings suggest that there is one essential escort protein in yeast, while more than one may exist in mammalian cells.
- Poullet P, Lin B, Esson K, Tamanoi F
- Functional significance of lysine 1423 of neurofibromin and characterization of a second site suppressor which rescues mutations at this residue and suppresses RAS2Val-19-activated phenotypes.
- Mol Cell Biol. 1994; 14: 815-21
- Display abstract
Lysine 1423 of neurofibromin (neurofibromatosis type I gene product [NF1]) plays a crucial role in the function of NF1. Mutations of this lysine were detected in samples from a neurofibromatosis patient as well as from cancer patients. To further understand the significance of this residue, we have mutated it to all possible amino acids. Functional assays using yeast ira complementation have revealed that lysine is the only amino acid that produced functional NF1. Quantitative analyses of different mutant proteins have suggested that their GTPase-activating protein (GAP) activity is drastically reduced as a result of a decrease in their Ras affinity. Such a requirement for a specific residue is not observed in the case of other conserved residues within the GAP-related domain. We also report that another residue, phenylalanine 1434, plays an important role in NF1 function. This was first indicated by the finding that defective NF1s due to an alteration of lysine 1423 to other amino acids can be rescued by a second site intragenic mutation at residue 1434. The mutation partially restored GAP activity in the lysine mutant. When the mutation phenylalanine 1434 to serine was introduced into a wild-type NF1 protein, the resulting protein acquired the ability to suppress activated phenotypes of RAS2Val-19 cells. This suppression, however, does not involve Ras interaction, since the phenylalanine mutant does not stimulate the intrinsic GTPase activity of RAS2Val-19 protein and does not have an increased affinity for Ras proteins.
- Leung T, How BE, Manser E, Lim L
- Cerebellar beta 2-chimaerin, a GTPase-activating protein for p21 ras-related rac is specifically expressed in granule cells and has a unique N-terminal SH2 domain.
- J Biol Chem. 1994; 269: 12888-92
- Display abstract
beta-Chimaerin, a 30-kDa GTPase-activating protein (GAP) for the p21 Ras-related Rac, is expressed specifically in late stage spermatocytes (Leung, T., How, B.-E., Manser, E., and Lim, L. (1993) J. Biol. Chem. 268, 3813-3816). Using antibodies raised against beta-chimaerin, we detected a major 46-kDa RacGAP in the rat cerebellum. With beta-chimaerin cDNA as a probe and using polymerase chain reaction, cDNAs from both human and rat cerebellum were isolated. The human and rat cDNAs encoded sequences containing cysteine-rich and GAP domains identical to those of testis beta-chimaerin. The cDNAs also encoded an additional N-terminal SH2 (Src homology 2) domain, probably derived from the beta-chimaerin gene by alternate splicing. This SH2 domain of the predicted 54-kDa protein was strikingly similar to that of alpha 2-chimaerin, including replacement by glutamic acid of the invariant tryptophan present at the start of other SH2 domains. The SH2 domains of alpha- and beta-chimaerin thus represent a subset of SH2 domains. The cerebellar beta-chimaerin (beta 2-) is expressed mainly in granule cells and exhibits postnatal developmental increases. beta 2-Chimaerin was enriched in particulate/synaptosomal fractions. In the mouse weaver mutant lacking mature granule cells, there is a corresponding decrease in beta 2-chimaerin, which could well serve as a marker of granule cell differentiation.
- Lancaster CA, Taylor-Harris PM, Self AJ, Brill S, van Erp HE, Hall A
- Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases.
- J Biol Chem. 1994; 269: 1137-42
- Display abstract
GTPase-activating proteins or GAPs play an important role in signal transduction pathways regulated by GTP-binding proteins. In addition to acting as down-regulators of GTPases, there is growing evidence that they also act as effector molecules required for downstream signaling. PLC-beta 1, the target protein regulated by the heterotrimeric GTPase Gq, has been shown to be a GAP, whereas rasGAP, a down-regulator of the small GTPase ras, may be required for the ras-mediated signals. We have purified a GAP specific for the rho subfamily of small GTPases. Partial sequence analysis of rhoGAP has led to the identification of a family of related proteins which now includes bcr, chimaerin, p190, p85, and 3BP-1. We report here the isolation of a cDNA clone encoding human rhoGAP and the expression of recombinant protein. The full-length protein is 50 kDa and is ubiquitously expressed in mammalian cells. At least three members of the rho family are substrates for rhoGAP, rho, rac, and G25K/CDC42, and they each bind equally well to the protein. In vitro GTPase assays, however, reveal that G25K/CDC42 is the preferred substrate. RhoGAP contains a proline-rich sequence, suggesting that it is an SH3-binding protein.
- Camus C, Boy-Marcotte E, Jacquet M
- Two subclasses of guanine exchange factor (GEF) domains revealed by comparison of activities of chimeric genes constructed from CDC25, SDC25 and BUD5 in Saccharomyces cerevisiae.
- Mol Gen Genet. 1994; 245: 167-76
- Display abstract
Guanine Exchange Factor (GEF) activity for Ras proteins has been associated with a conserved domain in Cdc25p, Sdc25p in Saccharomyces cerevisiae and several other proteins recently found in other eukaryotes. We have assessed the structure-function relationships between three different members of this family in S. cerevisiae, Cdc25p, Sdc25p and Bud5p. Cdc25p controls the Ras pathway, whereas Bud5p controls bud site localization. We demonstrate that the GEF domain of Sdc25p is closely related to that of Cdc25p. We first constructed a thermosensitive allele of SDC25 by specifically altering amino acid positions known to be changed in the cdc25-1 mutation. Secondly, we constructed three chimeric genes from CDC25 and SDC25, the products of which are as active in the Ras pathway as are the wild-type proteins. In contrast, similar chimeras made between CDC25 and BUD5 lead to proteins that are inactive both in the Ras and budding control pathways. This difference in the ability of chimeric proteins to retain activity allows us to define two subclasses of structurally different GEFs: Cdc25p and Sdc25p are Ras-specific GEFs, and Bud5p is a putative GEF for the Rsr1/Bud1 Rap-like protein.
- Wood DR et al.
- Biochemical characterization of yeast RAS2 mutants reveals a new region of ras protein involved in the interaction with GTPase-activating proteins.
- J Biol Chem. 1994; 269: 5322-7
- Display abstract
We report biochemical characterization of two recently identified mutants of yeast RAS2, RAS2-E99K and RAS2-E130K. These mutants exhibit dominant activating phenotypes in yeast. Characterization of their intrinsic GTPase and GDP dissociation as well as their ability to stimulate adenylate cyclase showed that these activities of RAS2-E99K mutant protein were similar to those of the wild type protein. RAS2-E130K protein, on the other hand, differed from the wild type protein with a fast GDP dissociation rate and 2-fold higher activation of adenylate cyclase. When the sensitivity to GTPase-activating protein (GAP) was examined, we found that the RAS2-E99K protein was approximately 1200-fold less sensitive to NF1-GAP activity. In addition, the affinity for NF1 as revealed by competition binding experiments was reduced more than 150-fold with RAS2-E99K protein. Thus, the RAS2-E99K mutation affects interaction with GAP proteins. This mutation is particularly interesting because it is the first mutation identified in the alpha 3 region of ras protein that affects GAP interaction. The alpha 3 region appears to be directly involved in interaction with NF1, since peptides containing the sequence encompassing residue 99 of RAS2 inhibit NF1-GAP activity. These results suggest that the interaction between ras and GAP involves a larger region within ras than previously recognized.
- Craighead MW, Bowden S, Watson R, Armstrong J
- Function of the ypt2 gene in the exocytic pathway of Schizosaccharomyces pombe.
- Mol Biol Cell. 1993; 4: 1069-76
- Display abstract
The ypt2 gene of the fission yeast Schizosaccharomyces pombe encodes a member of the ypt/rab family of small GTP-binding proteins, related in sequence to Sec4p of Saccharomyces cerevisiae but closer to mammalian rab8. We have introduced a mutation into the gene corresponding to a mutation identified in ypt1, in which a conserved valine residue was altered to asparagine. The mutated ypt2 gene was introduced into the S. pombe genome by gene replacement. The resulting strain was temperature-sensitive for growth. Normal growth was restored by introduction of a plasmid-borne wild-type ypt2 cDNA or by cDNA for rab8 but not by various other rab or ypt sequences. At restrictive temperature the mutant cells accumulated the secretory protein acid phosphatase in a form that appeared to be fully glycosylated and acquired a population of vesicles detectable by electron microscopy. Thus the ypt2 protein, and by inference rab8, appear to function in the last stage of the secretory pathway.
- Cvrckova F, Nasmyth K
- Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation.
- EMBO J. 1993; 12: 5277-86
- Display abstract
Cyclin-dependent protein kinases have a central role in cell cycle regulation. In Saccharomyces cerevisiae, Cdc28 kinase and the G1 cyclins Cln1, 2 and 3 are required for DNA replication, duplication of the spindle pole body and bud emergence. These three independent processes occur simultaneously in late G1 when the cells reach a critical size, an event known as Start. At least one of the three Clns is necessary for Start. Cln3 is believed to activate Cln1 and Cln2, which can then stimulate their own accumulation by means of a positive feedback loop. They (or Cln3) also activate another pair of cyclins, Clb5 and 6, involved in initiating S phase. Little is known about the role of Clns in spindle pole body duplication and budding. We report here the isolation of a gene (CLA2/BUD2/ERC25) that codes for a homologue of mammalian Ras-associated GTPase-activating proteins (GAPs) and is necessary for budding only in cln1 cln2 cells. This suggests that Cln1 and Cln2 may have a direct role in bud formation.
- Garrett MD et al.
- Interaction of Sec4 with GDI proteins from bovine brain, Drosophila melanogaster and Saccharomyces cerevisiae. Conservation of GDI membrane dissociation activity.
- FEBS Lett. 1993; 331: 233-8
- Display abstract
Rab GDP dissociation inhibitor (Rab GDI), will induce the dissociation of GDP-bound rab3A from synaptic membranes and will inhibit GDP dissociation from Sec4, a member of the Rab subgroup of the Ras GTPase superfamily which is required for exocytosis in Saccharomyces cerevisiae. We report that Rab GDI releases GDP-bound Sec4 from yeast membranes. dGDI, a Drosophila homologue can similarly inhibit GDP dissociation from Sec4 and release GDP-bound Sec4 from yeast membranes. An activity partially purified from yeast cytosol dissociates GDP-bound Sec4 from yeast membranes, suggesting that yeast also possess a GDI protein that functions to recycle Sec4 from its target membrane.
- Wilson BA, Khalil M, Tamanoi F, Cannon JF
- New activated RAS2 mutations identified in Saccharomyces cerevisiae.
- Oncogene. 1993; 8: 3441-5
- Display abstract
Activating mutations in RAS proto-oncogenes encode proteins with greater GTP binding. Such mutant proteins are responsible for many human cancers. Six new amino acids were discovered that can yield an activated Saccharomyces cerevisiae RAS2 protein when they are altered. These new RAS2 alleles were found among a collection of 35 random mutations that exhibit a dominant reduction of glycogen accumulation. The RAS2-P41S and RAS2-E99K alleles encode proteins that have lost responsiveness to GTPase activating proteins. They affect amino acids in loop 2 and helix 3 respectively and illustrate that GTPase activating proteins recognize a larger portion of the RAS structure than previously realized. RAS2 mutations E130K, S153F, A154T, and A157S alter amino acids proximal to the guanine binding site and probably influence nucleotide binding either directly or indirectly.
- Burton J, Roberts D, Montaldi M, Novick P, De Camilli P
- A mammalian guanine-nucleotide-releasing protein enhances function of yeast secretory protein Sec4.
- Nature. 1993; 361: 464-7
- Display abstract
Small GTP-binding proteins of the ras superfamily are important for exocytosis from eukaryotic cells. GTP-binding proteins can exist in two different conformations depending on whether they are bound to GDP or GTP, and are thought to function as molecular switches that regulate a variety of cellular processes. The GTP-GDP cycle is controlled by accessory proteins that promote the exchange of bound GDP or the hydrolysis of GTP. The protein Sec4, a member of the Sec4/Ypt1/Rab branch of the Ras superfamily, is involved in a late stage of the secretory pathway in yeast. Here we report the isolation of a mammalian complementary DNA, mss4, encoding a GDP-releasing protein that enhances Sec4 function. The Mss4 protein also stimulates GDP release from Ypt1 and from the mammalian protein Rab3a, but not from Ras2. Mss4 shows sequence similarity to Dss4, a yeast protein with similar biochemical properties.
- Brennwald P, Novick P
- Interactions of three domains distinguishing the Ras-related GTP-binding proteins Ypt1 and Sec4.
- Nature. 1993; 362: 560-3
- Display abstract
The genes SEC4 and YPT1 encode Ras-related GTP-binding proteins in the yeast Saccharomyces cerevisiae. Ypt1 is necessary for vesicular transport from the endoplasmic reticulum to the Golgi, whereas Sec4 is required for fusion of post-Golgi secretory vesicles to the plasma membrane. Recently, three structural domains have been proposed to specify the stage in cellular transport at which members of the Sec4/Ypt1/Rab family act: the effector domain, the C-terminal hypervariable region, and a region corresponding to loop 7 in the structure of p21ras (ref. 8). Here we use Sec4/Ypt1 chimaeras to show that these three regions cooperate to specify Ypt1 function and that the C-terminal hypervariable region is needed for Ypt1 localization to the Golgi. Unexpectedly, we found that a single chimaera can function as either Ypt1 or Sec4 without missorting carboxypeptidase Y or invertase.
- Andersen LB et al.
- A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity.
- Mol Cell Biol. 1993; 13: 487-95
- Display abstract
Sequence analysis has shown significant homology between the catalytic regions of the mammalian ras GTPase-activating protein (GAP), yeast Ira1p and Ira2p (inhibitory regulators of the RAS-cyclic AMP pathway), and neurofibromin, the protein encoded by the NF1 gene. Yeast expression experiments have confirmed that a 381-amino-acid segment of neurofibromin, dubbed the GAP-related domain (GRD), can function as a GAP. Using the RNA polymerase chain reaction with primers flanking the NF1-GRD, we have identified evidence for alternative splicing in this region of the NF1 gene. In addition to the already published sequence (type I), an alternative RNA carrying a 63-nucleotide insertion (type II) is present in all tissues examined, although the relative amounts of types I and II vary. The insertion is conserved across species but is not present in GAP, IRA1, or IRA2. GenBank searches have failed to identify significant similarity between the inserted sequence and known DNA or protein sequences, although the basic amino acid composition of the insertion shares features with nuclear targeting sequences. Expression studies in yeasts show that despite the partial disruption of the neurofibromin-IRA-GAP homology by this insertion, both forms of the NF1-GRD can complement loss of IRA function. In vivo assays designed to compare the GAP activity of the two alternatively spliced forms of the NF1-GRD show that both can increase the conversion of GTP-bound ras to its GDP-bound form, although the insertion of the 21 amino acids weakens this effect. The strong conservation of this alternative splicing suggests that both type I and II isoforms mediate important biological functions of neurofibromin.
- Yoshihisa T, Barlowe C, Schekman R
- Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum.
- Science. 1993; 259: 1466-8
- Display abstract
The binding and hydrolysis of guanosine triphosphate (GTP) by the small GTP-binding protein Sar1p is required to form transport vesicles from the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. Experiments revealed that an interaction between Sar1p and the Sec23p subunit of an oligomeric protein is also required for vesicle budding. The isolated Sec23p subunit and the oligomeric complex stimulated guanosine triphosphatase (GTPase) activity of Sar1p 10- to 15-fold but did not activate two other small GTP-binding proteins involved in vesicle traffic (Ypt1p and ARF). Activation of GTPase was inhibited by an antibody to Sec23p but not by an antibody that inhibits the budding activity of the other subunit of the Sec23p complex. Also, activation was thermolabile in pure samples of Sec23p that were isolated from two independent sec23 mutant strains. It appears that Sec23p represents a new class of GTPase-activating protein because its sequence shows no similarity to any known member of this family.
- Chen W, Lim HH, Lim L
- The CDC42 homologue from Caenorhabditis elegans. Complementation of yeast mutation.
- J Biol Chem. 1993; 268: 13280-5
- Display abstract
A Caenorhabditis elegans cDNA encoding a homologue of the p21 ras-related CDC42, designated as CDC42Ce, was isolated from a nematode mixed stage cDNA library. The encoded protein of 188 amino acid residues has 85% identity to both human G25K and CDC42Hs and 79 and 76% identity to the yeast CDC42Sp and CDC42Sc proteins, respectively. The CDC42Ce cDNA maps to a position on C. elegans chromosome II in close proximity to lin-26, a cell lineage gene. The CDC42Ce cDNA hybridizes to 2- and 1.5-kilobase mRNAs. Their expression is developmentally regulated with highest levels at the embryonic stage, decreasing progressively during development except for an increase of the more abundant 1.5-kilobase mRNA at the L3 stage. The glutathione S-transferase/CDC42Ce fusion protein expressed in Escherichia coli displays both GTP binding and intrinsic GTPase activities. The GTPase activity of CDC42Ce is moderately stimulated by human n-chimaerin, a GTPase-activating protein for the related p21 rac1. The CDC42Ce protein complements the temperature-sensitive lethal mutation cdc42-1 in yeast Saccharomyces cerevisiae. These data suggest that CDC42Ce is the C. elegans homologue of the yeast CDC42. The developmental expression pattern of mRNA and is biochemical properties of its encoded protein which are closely related to CErac1 suggest that the two p21s might be involved in related biological processes.
- Zheng Y, Hart MJ, Shinjo K, Evans T, Bender A, Cerione RA
- Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain.
- J Biol Chem. 1993; 268: 24629-34
- Display abstract
The Bem2 and Bem3 proteins, which appear to play roles in the regulation of bud site formation in Saccharomyces cerevisiae, show striking homology to a number of proteins that compose a family of GTPase-activating proteins (GAPs) for the rho-subgroup of ras-related GTP-binding proteins. These members include human platelet GAP for Cdc42Hs (the human homolog of a S. cerevisiae GTP-binding protein that regulates bud site assembly), the break point cluster region protein, the brain protein chimerin, the 85-kDa regulatory subunit (p85) of the phosphatidylinositol 3-kinase, and the ras-GAP-binding protein (p190). A fusion protein composed of the glutathione S-transferase protein and the rho-GAP homology region of Bem3 (designated GST-Bem3) stimulates the GTPase activity of the wild-type Cdc42Hs protein (Cdc42HsGly-12), but has no stimulatory effect on a GTPase-defective mutant (Cdc42HsVal-12), whereas a GST-Bem2 fusion protein does not stimulate the GTPase activity of either form of Cdc42Hs. We have compared the ability of GST-Bem3 to serve as a GAP for Cdc42Hs relative to other members of the rho-GAP subfamily and found the following order of potency: human platelet Cdc42Hs GAP > p190 > Bem3 > break point cluster region protein, whereas p85, like Bem2, shows no GAP activity or any ability to bind to the GTP-bound form of Cdc42Hs. We have taken advantage of the functional specificity exhibited by Bem3 (versus Bem2) in using Bem2/Bem3 chimeras, as well as different deletion mutant versions of the Bem3 protein, to delineate the limits of a functional Cdc42 GAP domain. The results of this study indicate that the carboxyl-terminal approximately 224 amino acids (which contain three regions of homology to the other members of the rho-GAP family) represent a "limit GAP." The first two appear to be important for binding to Cdc42Hs and for partial GAP activity.
- Dunn B, Stearns T, Botstein D
- Specificity domains distinguish the Ras-related GTPases Ypt1 and Sec4.
- Nature. 1993; 362: 563-5
- Display abstract
The essential Ras-related GTPases Ypt1 and Sec4 act at distinct stages of the secretion pathway in the yeast Saccharomyces cerevisiae: Ypt1 is required for vesicular transport from the endoplasmic reticulum to the Golgi apparatus, whereas Sec4 is required for fusion of secretory vesicles to the plasma membrane. Here we use chimaeras of the two proteins to identify a 9-residue segment of Ypt1 that, when substituted for the analogous segment of Sec4, allows the chimaera to perform the minimal functions of both proteins in vivo. This segment corresponds to loop L7 of the p21ras crystal structure. Substitution of a 24-residue Ypt1 segment, including the residues just mentioned, together with 12 residues of Ypt1 corresponding to the 'effector region' of p21ras (loop L2; refs 7,8), transforms Sec4 into a fully functional Ypt1 protein without residual Sec4 function.
- Walworth NC, Brennwald P, Kabcenell AK, Garrett M, Novick P
- Hydrolysis of GTP by Sec4 protein plays an important role in vesicular transport and is stimulated by a GTPase-activating protein in Saccharomyces cerevisiae.
- Mol Cell Biol. 1992; 12: 2017-28
- Display abstract
Sec4, a GTP-binding protein of the ras superfamily, is required for exocytosis in the budding yeast Saccharomyces cerevisiae. To test the role of GTP hydrolysis in Sec4 function, we constructed a mutation, Q-79----L, analogous to the oncogenic mutation of Q-61----L in Ras, in a region of Sec4 predicted to interact with the phosphoryl group of GTP. The sec4-leu79 mutation lowers the intrinsic hydrolysis rate to unmeasurable levels. A component of a yeast lysate specifically stimulates the hydrolysis of GTP by Sec4, while the rate of hydrolysis of GTP by Sec4-Leu79 can be stimulated by this GAP activity to only 30% of the stimulated hydrolysis rate of the wild-type protein. The decreased rate of hydrolysis results in the accumulation of the Sec4-Leu79 protein in its GTP-bound form in an overproducing yeast strain. The sec4-leu79 allele can function as the sole copy of sec4 in yeast cells. However, it causes recessive, cold-sensitive growth, a slowing of invertase secretion, and accumulation of secretory vesicles and displays synthetic lethality with a subset of other secretory mutants, indicative of a partial loss of Sec4 function. While the level of Ras function reflects the absolute level of GTP-bound protein, our results suggest that the ability of Sec4 to cycle between its GTP and GDP bound forms is important for its function in vesicular transport, supporting a mechanism for Sec4 function which is distinct from that of the Ras protein.
- McCabe PC, Haubruck H, Polakis P, McCormick F, Innis MA
- Functional interaction between p21rap1A and components of the budding pathway in Saccharomyces cerevisiae.
- Mol Cell Biol. 1992; 12: 4084-92
- Display abstract
The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.
- Becker J, Tan TJ, Trepte HH, Gallwitz D
- Mutational analysis of the putative effector domain of the GTP-binding Ypt1 protein in yeast suggests specific regulation by a novel GAP activity.
- EMBO J. 1991; 10: 785-92
- Display abstract
Ypt1p of Saccharomyces cerevisiae is a ras-related GTP-binding protein that fulfils an essential function in intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi complex. Ypt proteins from yeasts and mammals that share an identical sequence in the region analogous to the ras effector domain are functionally interchangeable. We analyzed the function of the putative effector domain of yeast Ypt1p (amino acids 37-45) using site-directed mutagenesis and gene replacement. Four out of six point mutations leading to single amino acid substitutions (Y37F, S39A, T40S and V43E) did not cause any particular phenotype. ypt1(I41M) mutants were inviable whereas ypt1(D44N) mutant cells were temperature sensitive at 37 degrees C and accumulated core-glycosylated invertase at the nonpermissive temperature. This mutant also accumulated ER and small vesicles both at 25 degrees C and 37 degrees C. From porcine liver we identified and partially purified a GTPase-activating protein (yptGAP) that is similarly active with mouse ypt1p/rab1p and yeast Ypt1p but is inactive with H-ras protein as a substrate. Although none of the yeast ypt1 mutant proteins were significantly impaired in their ability to bind GTP, purified ypt1(D44N)p responded only partially and ypt1(I41M)p did not respond at all, to yptGAP. Thus we suggest that analogous to rasGAP/H-ras p21 interaction in mammalian cells, yptGAP is an intracellular target of Ypt1p, interacting with the effector domain and regulating its GTPase activity, and that this interaction is required for the functioning of yeast Ypt1p in intracellular protein transport.
- Tan TJ, Vollmer P, Gallwitz D
- Identification and partial purification of GTPase-activating proteins from yeast and mammalian cells that preferentially act on Ypt1/Rab1 proteins.
- FEBS Lett. 1991; 291: 322-6
- Display abstract
Two GTPase-activating proteins of apparent molecular mass of 100 kDa and 30 kDa have been partially purified from porcine liver cytosol using mammalian Ypt1/Rab1 protein as substrate. Both proteins act most efficiently on Ypt1/Rab1p, but are inactive with H-Ras p21. From the budding yeast Saccharomyces cerevisiae, a cytosolic 40 kDa yptGAP was partially purified. It accelerates the intrinsic GTPase activity of wild-type Ypt1p but not of H-Ras p21 or a mutant ypt1p with an amino acid substitution of the effector domain which renders the protein functionally inactive in yeast cells.
- Tanaka K, Lin BK, Wood DR, Tamanoi F
- IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein.
- Proc Natl Acad Sci U S A. 1991; 88: 468-72
- Display abstract
The ras GTPase-activating protein (GAP), identified and characterized in mammalian cells, stimulates the intrinsic GTPase activity of ras proteins. We have previously proposed that the IRA genes, negative regulators of RAS genes in Saccharomyces cerevisiae, encode yeast homologs of the mammalian GAP. In this paper, we present the following evidence that a product of the IRA2 gene exhibits GAP activity similar to that of the mammalian GAP protein. (i) Extracts of yeast cells overexpressing IRA2 stimulated the GTPase activity of the yeast RAS2 protein. (ii) An epitope for a monoclonal antibody (12CA5) was added to the N terminus of the IRA2 protein. The GAP activity of extracts prepared from cells expressing this fusion protein was shown to be immunoprecipitable by 12CA5. (iii) An IRA2 protein fused to glutathione S-transferase (GST) was produced and partially purified from Escherichia coli cells. GAP activity was detected with this purified GST-IRA2 fusion protein. (iv) The GAP activity of IRA2 proteins described above did not stimulate the GTPase activity of the RAS2Val19 protein, a protein having an amino acid alteration analogous to that found in mammalian oncogenic ras proteins. This result parallels studies showing that mammalian GAP is incapable of stimulating the GTPase activity of mammalian oncogenic proteins. The remarkable conservation between the GAP activity in mammalian and yeast cells supports the idea that the function of GAP is to negatively regulate ras proteins in mammalian cells.
- Halenbeck R, Crosier WJ, Clark R, McCormick F, Koths K
- Purification, characterization, and western blot analysis of human GTPase-activating protein from native and recombinant sources.
- J Biol Chem. 1990; 265: 21922-8
- Display abstract
Human ras GTPase-activating protein (GAP) is a cytoplasmic factor that stimulates the GTPase activity of normal N-ras p21 while having no stimulatory effect on the GTPase activity of oncogenic variants of N-ras p21. We have purified two forms of native ras GAP from human placental tissue. In addition to the Mr = 120,000 type I GAP reported previously (1), an equivalent amount of an Mr = 95,000 molecule with GAP activity was recovered and shown to have the N-terminal sequence expected for type II GAP. The two GAP forms in placental extracts were resolved by molecular sieve chromatography and appeared to have a monomeric native structure. Human recombinant type I GAP was produced intracellularly in Sf9 insect cells using a baculovirus expression vector, and 10-mg quantities were purified to homogeneity in three steps. Comparison of the purified native and recombinant GAP molecules revealed that all three displayed similar biological specific activities in an in vitro GAP assay. A polyclonal antibody to purified recombinant GAP was prepared and shown to neutralize the activity of both native and recombinant GAPs. The antibody was also highly specific for the detection of native GAP by Western blot. Type I and II GAP species were detected in approximately equal amounts in cytoplasmic extracts of human placenta, but only type I GAP was observed when other human tissues were examined.
- Cross SL
- More functions yet: no ras for the weary. The Role of Small GTP-Binding Proteins in Cellular Function, sponsored by the Oncogenes and Mitogens Program Project, University of Virginia Cancer Center, Charlottesville, VA, USA, November 2-3, 1989.
- New Biol. 1990; 2: 136-8
- Zahraoui A, Touchot N, Chardin P, Tavitian A
- The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion.
- J Biol Chem. 1989; 264: 12394-401
- Display abstract
Seven cDNA clones corresponding to the rab1, rab2, rab3A, rab3B, rab4, rab5, and rab6 genes were isolated from a human pheochromocytoma cDNA library. They encode 23-25 kDa polypeptides which share approximately 30-50% homology and belong to the ras superfamily. The rab1, rab2, rab3A, and rab4 proteins are the human counterparts of the rat rab gene products that we have previously characterized. Comparison of the seven human rab proteins with the yeast YPT1 (YPT1p) and SEC4 (SEC4p) proteins reveals highly significant sequence similarities. H-rab1p shows 75% amino acid identity with YPT1p and may be therefore considered as its human counterpart. The other proteins share approximately 40% homology with YPT1p and SEC4p. The homology (approximately 30%) between these rab proteins and p21ras is restricted to the four conserved domains involved in the GTP/GDP binding. Human rab proteins were produced in Escherichia coli. Large amounts of rab proteins in soluble form can be extracted and purified without the use of detergents. All six proteins bind GTP and exhibit GTPase activities. A possible involvement of the rab proteins in secretion is discussed.
- Schaber MD et al.
- Ras interaction with the GTPase-activating protein (GAP).
- Proteins. 1989; 6: 306-15
- Display abstract
Biologically active forms of Ras complexed to GTP can bind to the GTPase-activating protein (GAP), which has been implicated as possible target of Ras in mammalian cells. In order to study the structural features of Ras required for this interaction, we have evaluated a series of mutant ras proteins for the ability to bind GAP and a series of Ras peptides for the ability to interfere with this interaction. Point mutations in the putative effector region of Ras (residues 32-40) that inhibit biological activity also impair Ras binding to GAP. An apparent exception is the Thr to Ser substitution at residue 35; [Ser-35]Ras binds to GAP as effectively as wild-type Ras even though this mutant is biologically weak in both mammalian and S. cerevisiae cells. In vitro, [Ser-35]Ras can also efficiently stimulate the S. cerevisiae target of Ras, adenylyl cyclase, indicating that other factors may influence Ras/protein interactions in vivo. Peptides having Ras residues 17-44 and 17-32 competed with the binding of Ras to E. coli-expressed GAP with IC50 values of 2.4 and 0.9 microM, respectively, whereas Ras peptide 17-26 was without effect up to 400 microM. A related peptide from the yeast GTP-binding protein YPT1 analogous to Ras peptide 17-32 competed with an IC50 value of 19 microM even though the YPT1 protein itself is unable to bind to GAP. These results suggest that determinants within Ras peptide 17-32 may be important for Ras binding to GAP.
- Alsip GR, Konkel DA
- A processed chicken pseudogene (CPS1) related to the ras oncogene superfamily.
- Nucleic Acids Res. 1986; 14: 2123-38
- Display abstract
We describe the first polyA-containing processed pseudogene reported in the chicken. It includes a 0.52 kb open reading frame which could encode a 175 amino acid protein. The putative protein shows extensive homology to the ras oncogene superfamily, being most closely related to the yeast protein YP2. It is one of the two most divergent members of the ras superfamily yet described and is the most homologous of any ras-related protein to the G-protein alpha-transducin. The chicken genome contains at least one other gene highly homologous to CPS1; at least one member of the CPS1 family is active, but only early in chicken development. This pattern of expression, and the presence of mutations in regions known to activate human c-ras genes to oncogenicity, suggest that CPS1 may represent a new oncogene family.