Secondary literature sources for TIR
The following references were automatically generated.
- Dodds PN, Lawrence GJ, Ellis JG
- Contrasting modes of evolution acting on the complex N locus for rust resistance in flax.
- Plant J. 2001; 27: 439-53
- Display abstract
Three rust resistance specificities, N, N1 and N2, map to the complex N locus of flax. We used a degenerate PCR approach, with primers directed to the nucleotide binding site (NBS) domain characteristic of many plant resistance genes, to isolate resistance gene analogs (RGAs) from flax. One RGA clone detected RFLPs co-segregating with alleles of the N locus. With this probe we isolated four related genes that occur within a 30kbp region and encode proteins with NBS and leucine-rich repeat (LRR) domains and N-terminal Toll/Interleukin-1 Receptor homology (TIR) domains. One of these four genes was identified as the N resistance gene by sequence analysis of three mutant alleles and by transgenic expression. We isolated homologous genes from two flax lines containing the N1 or N2 specificities and from flax lines carrying no N locus resistance specificities. Analysis of shared polymorphisms among this set of 18 N locus sequences revealed three groups of genes with independent lineages. Sequence exchanges have only occurred between genes within each group, but not between groups. Two of the groups contain only one sequence from each haplotype and probably represent orthologous genes. However, the third group contains two genes from each haplotype. We suggest that the re-assortment of variation by recombination/gene conversion at this locus is limited by the degree of sequence identity between genes.
- Dinesh-Kumar SP, Tham WH, Baker BJ
- Structure-function analysis of the tobacco mosaic virus resistance gene N.
- Proc Natl Acad Sci U S A. 2000; 97: 14789-94
- Display abstract
The tobacco N gene is a member of the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant resistance (R) genes and confers resistance to tobacco mosaic virus (TMV). We investigated the importance of specific domains of N in inducing TMV resistance, by examining various N deletion and point mutations that introduce single amino acid substitution mutants in vivo. Our deletion analysis suggests that the TIR, NBS, and LRR domains play an indispensable role in the induction of resistance responses against TMV. We show that amino acids conserved among the Toll/IL-1R/plant R gene TIR domain and NBS-containing proteins play a critical role in N-mediated TMV resistance. Some loss-of-function N alleles such as the TIR deletion and point mutations in the NBS (G216A/E/V/R, G218R, G219D, K222E/N, and T223A/N) interfere with the wild-type N function and behave like dominant negative mutations. These F(1) plants mount a hypersensitive response (HR) that is indistinguishable from that of the wild-type N plants, yet TMV was able to move systemically, causing a systemic hypersensitive response (SHR). Many amino acid substitutions in the TIR, NBS, and LRR domains of N lead to a partial loss-of-function phenotype. These mutant plants mount delayed HR compared with the wild-type N plants and fail to contain the virus to the infection site. In addition, some partial loss-of-function alleles (W82S/A, W141S/A, G218V/S, and G219V) interfere with the wild-type N function, leading to SHR. The partial loss-of-function and dominant negative mutant alleles described in this report will be useful in furthering our understanding of the TIR-NBS-LRR class of R genes.
- Young ND
- The genetic architecture of resistance.
- Curr Opin Plant Biol. 2000; 3: 285-90
- Display abstract
Plant resistance genes (R genes), especially the nucleotide binding site leucine-rich repeat (NBS-LRR) family of sequences, have been extensively studied in terms of structural organization, sequence evolution and genome distribution. These studies indicate that NBS-LRR sequences can be split into two related groups that have distinct amino-acid motif organizations, evolutionary histories and signal transduction pathways. One NBS-LRR group, characterized by the presence of a Toll/interleukin receptor domain at the amino-terminal end, seems to be absent from the Poaceae. Phylogenetic analysis suggests that a small number of NBS-LRR sequences existed among ancient Angiosperms and that these ancestral sequences diversified after the separation into distinct taxonomic families. There are probably hundreds, perhaps thousands, of NBS-LRR sequences and other types of R gene-like sequences within a typical plant genome. These sequences frequently reside in 'mega-clusters' consisting of smaller clusters with several members each, all localized within a few million base pairs of one another. The organization of R-gene clusters highlights a tension between diversifying and conservative selection that may be relevant to gene families that are unrelated to disease resistance.
- Ellis J, Dodds P, Pryor T
- The generation of plant disease resistance gene specificities.
- Trends Plant Sci. 2000; 5: 373-9
- Display abstract
We are gaining an understanding of the molecular basis of resistance specificity and of the natural processes that generate different specificities. This is a prerequisite for the genetic engineering of new plant disease-resistance genes to control diseases for which naturally occurring resistance is inadequate. DNA sequence analysis indicates that point mutation, recombination and selection can generate and maintain the high levels of polymorphism observed in resistance genes. Comparisons of closely related resistance proteins indicate that specificity can be determined by variation in at least two regions. One of these contains leucine-rich repeats, which are a common feature of most resistance proteins.
- Brommonschenkel SH, Frary A, Frary A, Tanksley SD
- The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi.
- Mol Plant Microbe Interact. 2000; 13: 1130-8
- Display abstract
We used a positional cloning approach to isolate the Sw-5 disease resistance locus of tomato. Complementation experiments with overlapping cosmid clones enabled us to demonstrate that Sw-5 is a single gene locus capable of recognizing several tospovirus isolates and species. Analysis of the predicted Sw-5 protein suggests that it is a cytoplasmic protein, with a potential nucleotide binding site (NBS) domain and a C-terminal end consisting of leucine-rich repeats (LRRs). Based on its structural features, Sw-5 belongs to the class of NBS-LRR resistance genes that includes the tomato Mi, 12, and Prf genes; the Arabidopsis RPM1 gene; and the plant potato virus X resistance gene Rx. The overall similarity between the Sw-5 and Mi proteins of tomato suggests that a shared or comparable signal transduction pathway leads to both virus and nematode resistance in tomato. The similarity also supports the hypothesis that Sw-5 provides resistance via a hypersensitive response. Sw-5 is a member of a loosely clustered gene family in the telomeric region of chromosome 9. Members of this family map to other regions of chromosome 9 and also to chromosome 12, where several fungal, virus, and nematode genes have been mapped, suggesting that paralogs of Sw-5 may have evolved to provide different resistance specificities.
- Bendahmane A, Querci M, Kanyuka K, Baulcombe DC
- Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato.
- Plant J. 2000; 21: 73-81
- Display abstract
Rx2 confers resistance against potato virus X (PVX). To clone Rx2, we developed a system based on Agrobacterium-mediated transient expression of candidate R genes in transgenic tobacco leaves expressing the PVX coat protein elicitor of Rx2-mediated resistance. Using this system, a potato gene eliciting HR specifically in the presence of the elicitor was identified. Based on genetical and functional analysis, it is concluded that the cloned gene is Rx2. The transient expression system is potentially adaptable to cloning of any other resistance gene. The Rx2 locus is on chromosome V of potato and the encoded protein is highly similar to the products of Rx1 and Rxh1 encoded on potato chromosome XII. Rxh1 has been shown elsewhere to encode a potato cyst nematode resistance gene Gpa2. All three proteins are in the leucine zipper-nucleotide binding site-leucine rich repeat class of resistance gene products. Rx1 and Rx2 are functionally identical and are almost identical in the C terminal region consistent with a role of the leucine rich repeats in recognition of the PVX coat protein. In the N terminal, half there are some regions where the Rx1 and Rx2 proteins are more similar to each other than to the Rxh1 protein. However, in other regions these proteins are more similar to Rxh1 than to each other. Based on this mosaic pattern of sequence similarity, we conclude that sequence exchange occurs repeatedly between genetically unlinked disease resistance genes through a process of gene conversion.
- Graham MA, Marek LF, Lohnes D, Cregan P, Shoemaker RC
- Expression and genome organization of resistance gene analogs in soybean.
- Genome. 2000; 43: 86-93
- Display abstract
Sequence analysis of cloned plant disease-resistance genes reveals a number of conserved domains. Researchers have used these domains to amplify analogous sequences, resistance gene analogs (RGAs), from soybean and other crops. Many of these RGAs map in close proximity to known resistance genes. While this technique is useful in identifying potential disease resistance loci, identifying the functional resistance gene from a cluster of homologs requires sequence information from outside of these conserved domains. To study RGA expression and to determine the extent of their similarity to other plant resistance genes, two soybean cDNA libraries (root and epicotyl) were screened by hybridization with RGA class-specific probes. cDNAs hybridizing to RGA probes were detected in each library. Two types of cDNAs were identified. One type was full-length and contained several disease-resistance gene (R-gene) signatures. The other type contained several deletions within these signatures. Sequence analyses of the cDNA clones placed them in the Toll-Interleukin-1 receptor, nucleotide binding domain, and leucine-rich repeat family of disease-resistance genes. Using clone-specific primers from within the 3' end of the LRRs, we were able to map two cDNA clones (LM6 and MG13) to a BAC contig that is known to span a cluster of disease-resistance genes.
- Gassmann W, Hinsch ME, Staskawicz BJ
- The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes.
- Plant J. 1999; 20: 265-77
- Display abstract
Plant-disease resistance (R) genes mediate the specific recognition of invading pathogens carrying cognate avirulence (avr) determinants. RPS4 is a disease-resistance locus on chromosome 5 of Arabidopsis thaliana specifying resistance to strains of Pseudomonas syringae pv. tomato expressing avrRps4. We have isolated the RPS4 gene using a map-based cloning approach. RPS4 encodes a predicted protein of 1217 amino acids that contains an N-terminus with homology to the intracellular domains of the Drosophila Toll protein and the mammalian interleukin-1 receptor (TIR domain), a tripartite nucleotide-binding site (NBS), and leucine-rich repeats (LRR). Incomplete splicing of the RPS4 mRNA was observed, which may give rise to truncated protein products consisting mainly of the TIR and NBS domains. These features classify RPS4 as a member of the TIR-NBS-LRR R gene family founded by N, L6 and RPP5, which determine resistance to viral, fungal and oomycete pathogens, respectively. Previous work has shown that RPS4, like other Arabidopsis TIR-NBS-LRR R genes specifying resistance to oomycetes, is dependent on a functional EDS1 allele for disease-resistance signaling. The characterization of RPS4 presented here thus establishes a role for TIR-NBS-LRR R genes in resistance to bacterial pathogens, and provides evidence for the model that dependence of R genes on EDS1 is determined by R protein structure, and not by pathogen type. The cloning of RPS4 and the previous isolation of avrRps4 provide the molecular tools for a genetic and molecular dissection of the TIR-NBS-LRR R gene signaling pathway in Arabidopsis.
- Warren RF, Henk A, Mowery P, Holub E, Innes RW
- A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes.
- Plant Cell. 1998; 10: 1439-52
- Display abstract
Recognition of pathogens by plants is mediated by several distinct families of functionally variable but structurally related disease resistance (R) genes. The largest family is defined by the presence of a putative nucleotide binding domain and 12 to 21 leucine-rich repeats (LRRs). The function of these LRRs has not been defined, but they are speculated to bind pathogen-derived ligands. We have isolated a mutation in the Arabidopsis RPS5 gene that indicates that the LRR region may interact with other plant proteins. The rps5-1 mutation causes a glutamate-to-lysine substitution in the third LRR and partially compromises the function of several R genes that confer bacterial and downy mildew resistance. The third LRR is relatively well conserved, and we speculate that it may interact with a signal transduction component shared by multiple R gene pathways.
- Yoshimura S et al.
- Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation.
- Proc Natl Acad Sci U S A. 1998; 95: 1663-8
- Display abstract
The Xa1 gene in rice confers resistance to Japanese race 1 of Xanthomonas oryzae pv. oryzae, the causal pathogen of bacterial blight (BB). We isolated the Xa1 gene by a map-based cloning strategy. The deduced amino acid sequence of the Xa1 gene product contains nucleotide binding sites (NBS) and a new type of leucine-rich repeats (LRR); thus, Xa1 is a member of the NBS-LRR class of plant disease-resistance genes, but quite different from Xa21, another BB-resistance gene isolated from rice. Interestingly, Xa1 gene expression was induced on inoculation with a bacterial pathogen and wound, unlike other isolated resistance genes in plants, which show constitutive expression. The induced expression may be involved in enhancement of resistance against the pathogen.
- Parker JE et al.
- The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6.
- Plant Cell. 1997; 9: 879-94
- Display abstract
Plant disease resistance genes operate at the earliest steps of pathogen perception. The Arabidopsis RPP5 gene specifying resistance to the downy mildew pathogen Peronospora parasitica was positionally cloned. It encodes a protein that possesses a putative nucleotide binding site and leucine-rich repeats, and its product exhibits striking structural similarity to the plant resistance gene products N and L6. Like N and L6, the RPP5 N-terminal domain resembles the cytoplasmic domains of the Drosophila Toll and mammalian interleukin-1 transmembrane receptors. In contrast to N and L6, which produce predicted truncated products by alternative splicing, RPP5 appears to express only a single transcript corresponding to the full-length protein. However, a truncated form structurally similar to those of N and L6 is encoded by one or more other members of the RPP5 gene family that are tightly clustered on chromosome 4. The organization of repeated units within the leucine-rich repeats encoded by the wild-type RPP5 gene and an RPP5 mutant allele provides molecular evidence for the heightened capacity of this domain to evolve novel configurations and potentially new disease resistance specificities.
- Leister RT, Ausubel FM, Katagiri F
- Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1.
- Proc Natl Acad Sci U S A. 1996; 93: 15497-502
- Display abstract
The Arabidopsis thaliana disease resistance genes RPS2 and RPM1 belong to a class of plant disease resistance genes that encode proteins that contain an N-terminal tripartite nucleotide binding site (NBS) and a C-terminal tandem array of leucine-rich repeats. RPS2 and RPM1 confer resistance to strains of the bacterial phytopathogen Pseudomonas syringae carrying the avirulence genes avrRpt2 and avrB, respectively. In these gene-for-gene relationships, it has been proposed that pathogen avirulence genes generate specific ligands that are recognized by cognate receptors encoded by the corresponding plant resistance genes. To test this hypothesis, it is crucial to know the site of the potential molecular recognition. Mutational analysis of RPS2 protein and in vitro translation/translocation studies indicated that RPS2 protein is localized in the plant cytoplasm. To determine whether avirulence gene products themselves are the ligands for resistance proteins, we expressed the avrRpt2 and avrB genes directly in plant cell using a novel quantitative transient expression assay, and found that expression of avrRpt2 and avrB elicited a resistance response in plants carrying the corresponding resistance genes. This observation indicates that no bacterial factors other than the avirulence gene products are required for the specific resistance response as long as the avirulence gene products are correctly localized. We propose that molecular recognition of P. syringae in RPS2- and RPM1-specified resistance occurs inside of plant cells.
- Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG
- The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N.
- Plant Cell. 1995; 7: 1195-206
- Display abstract
The L6 rust resistance gene from flax was cloned after tagging with the maize transposable element Activator. The gene is predicted to encode two products of 1294 and 705 amino acids that result from alternatively spliced transcripts. The longer product is similar to the products of two other plant disease resistance genes, the tobacco mosaic virus resistance gene N of tobacco and the bacterial resistance gene RPS2 of Arabidopsis. The similarity involves the presence of a nucleotide (ATP/GTP) binding site and several other amino acid motifs of unknown function in the N-terminal half of the polypeptides and a leucine-rich region in the C-terminal half. The truncated product of L6, which lacks most of the leucine-rich C-terminal region, is similar to the truncated product that is predicted from an alternative transcript of the N gene. The L6, N, and RPS2 genes, which control resistance to three widely different pathogen types, are the foundation of a class of plant disease resistance genes that can be referred to as nucleotide binding site/leucine-rich repeat resistance genes.