Secondary literature sources for VPS9
The following references were automatically generated.
- Wang Y, Colicelli J
- RAS interaction with effector target RIN1.
- Methods Enzymol. 2001; 332: 139-51
- Bowers K, Levi BP, Patel FI, Stevens TH
- The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae.
- Mol Biol Cell. 2000; 11: 4277-94
- Display abstract
We show that the vacuolar protein sorting gene VPS44 is identical to NHX1, a gene that encodes a sodium/proton exchanger. The Saccharomyces cerevisiae protein Nhx1p shows high homology to mammalian sodium/proton exchangers of the NHE family. Nhx1p is thought to transport sodium ions into the prevacuole compartment in exchange for protons. Pulse-chase experiments show that approximately 35% of the newly synthesized soluble vacuolar protein carboxypeptidase Y is missorted in nhx1 delta cells, and is secreted from the cell. nhx1 delta cells accumulate late Golgi, prevacuole, and lysosome markers in an aberrant structure next to the vacuole, and late Golgi proteins are proteolytically cleaved more rapidly than in wild-type cells. Our results show that efficient transport out of the prevacuolar compartment requires Nhx1p, and that nhx1 delta cells exhibit phenotypes characteristic of the "class E" group of vps mutants. In addition, we show that Nhx1p is required for protein trafficking even in the absence of the vacuolar ATPase. Our analysis of Nhx1p provides the first evidence that a sodium/proton exchange protein is important for correct protein sorting, and that intraorganellar ion balance may be important for endosomal function in yeast.
- Gerrard SR, Bryant NJ, Stevens TH
- VPS21 controls entry of endocytosed and biosynthetic proteins into the yeast prevacuolar compartment.
- Mol Biol Cell. 2000; 11: 613-26
- Display abstract
Mutations in the VPS (vacuolar protein sorting) genes of Saccharomyces cerevisiae have been used to define the trafficking steps that soluble vacuolar hydrolases take en route from the late Golgi to the vacuole. The class D VPS genes include VPS21, PEP12, and VPS45, which appear to encode components of a membrane fusion complex involved in Golgi-to-endosome transport. Vps21p is a member of the Rab family of small Ras-like GTPases and shows strong homology to the mammalian Rab5 protein, which is involved in endocytosis and the homotypic fusion of early endosomes. Although Rab5 and Vps21p appear homologous at the sequence level, it has not been clear if the functions of these two Rabs are similar. We find that Vps21p is an endosomal protein that is involved in the delivery of vacuolar and endocytosed proteins to the vacuole. Vacuolar and endocytosed proteins accumulate in distinct transport intermediates in cells that lack Vps21p function. Therefore, it appears that Vps21p is involved in two trafficking steps into the prevacuolar/late endosomal compartment.
- Di Cristofano A et al.
- Molecular cloning and characterization of p56dok-2 defines a new family of RasGAP-binding proteins.
- J Biol Chem. 1998; 273: 4827-30
- Display abstract
Chronic myelogenous leukemia (CML) is a disease characterized by the presence of p210(bcr-abl), a chimeric protein with tyrosine kinase activity. Substrates for p210(bcr-abl) are likely to be involved in the pathogenesis of CML. Here we describe the purification, cDNA cloning, and characterization of a 56-kDa tyrosine phosphorylated protein, p56(dok-2) (Dok-2), from p210(bcr-abl) expressing cells. The human dok-2 cDNA encodes a 412-amino acid protein with a predicted N-terminal pleckstrin homology domain as well as several other features of a signaling molecule, including 13 potential tyrosine phosphorylation sites, six PXXP motifs, and the ability to bind to p120(RasGAP). Dok-2 was shown to be 35% identical to p62(dok-1), a recently identified RasGAP binding protein from CML cells, and analysis of the expressed sequence tag data base revealed the presence of at least four additional proteins containing a Dok homology sequence motif. Dok mRNAs were primarily expressed in tissues of hematopoietic origin. These findings strongly suggest that a family of Dok-related proteins exists that bind to RasGAP and may mediate the effects of p210(bcr-abl) in CML.
- Sieburth DS, Sun Q, Han M
- SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans.
- Cell. 1998; 94: 119-30
- Display abstract
We describe the identification and characterization of a novel gene, sur-8, that positively regulates Ras-mediated signal transduction during C. elegans vulval development. Reduction of sur-8 function suppresses an activated ras mutation and dramatically enhances phenotypes of mpk-1 MAP kinase and ksr-1 mutations, while increase of sur-8 dosage enhances an activated ras mutation. sur-8 appears to act downstream of or in parallel to ras but upstream of raf. sur-8 encodes a conserved protein that is composed predominantly of leucine-rich repeats. The SUR-8 protein interacts directly with Ras but not with the Ras(P34G) mutant protein, suggesting that SUR-8 may mediate its effects through Ras binding. A structural and functional SUR-8 homolog in humans specifically binds K-Ras and N-Ras but not H-Ras in vitro.
- Finken-Eigen M, Rohricht RA, Kohrer K
- The VPS4 gene is involved in protein transport out of a yeast pre-vacuolar endosome-like compartment.
- Curr Genet. 1997; 31: 469-80
- Display abstract
Four yeast mutants were isolated in a screen for dominant-negative vacuolar protein-sorting mutants, secreting a carboxypeptidase Y-invertase hybrid protein. In addition to defects in the sorting/transport of soluble vacuolar hydrolases, the mutants accumulated a pre-vacuolar endosome-like compartment. The mutant alleles causing the defects were identified as the members of the VPS4 gene locus, each harbouring single-point mutations leading to amino-acid exchanges at positions 233 (E233Q), 211 (E211 K), and 178 (G178D). These mutations all reside within a 200 amino-acid-long ATPase module, common to members of the AAA-protein family. The VPS4 gene product shows homology to the yeast Sec18p (50% similarity and 25% identity), which is involved in several vesicle-mediated protein transport steps and homotypic membrane fusion events. Disruption of the VPS4 gene leads to a recessive vacuolar protein-sorting phenotype. About 40% of newly synthesized CPY is secreted as the Golgi-modified p2CPY precursor form. Transport of secretory proteins to the plasma membrane is normal as demonstrated by the secretion of invertase and alpha-factor. The alpha-factor, however, is secreted as a partially processed precursor, caused by defects in late Golgi function. The vps4 mutants also exhibit defects in fluid-phase endocytosis, as demonstrated by the accumulation of Lucifer Yellow in a pre-vacuolar endosome-like compartment. Based on the pleiotropic phenotype of the vps4 mutants and on the sequence homology to NSF/Sec18p, we propose that the VPS4 gene product is required for efficient transport out of the pre-vacuolar endosome-like compartment.
- Burd CG, Peterson M, Cowles CR, Emr SD
- A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast.
- Mol Biol Cell. 1997; 8: 1089-104
- Display abstract
The vacuolar protein-sorting (VPS) pathway of Saccharomyces cerevisiae mediates localization of proteins from the trans-Golgi to the vacuole via a prevacuolar endosome compartment. Mutations in class D vacuolar protein-sorting (vps) genes affect vesicle-mediated Golgi-to-endosome transport and result in secretion of vacuolar proteins. Temperature-sensitive-for-function (tsf) and dominant negative mutations in PEP12, encoding a putative SNARE vesicle receptor on the endosome, and tsf mutations in VAC1, a gene implicated in vacuole inheritance and vacuolar protein sorting, were constructed and used to demonstrate that Pep12p and Vac1p are components of the VPS pathway. The sequence of Vac1p contains two putative zinc-binding RING motifs, a zinc finger motif, and a coiled-coil motif. Site-directed mutations in the carboxyl-terminal RING motif strongly affected vacuolar protein sorting. Vac1p was found to be tightly associated with membranes as a monomer and in a large SDS-resistant complex. By using Pep12p affinity chromatography, we found that Vac1p, Vps45p (SEC1 family member), and Sec18p (yeast N-ethyl maleimide-sensitive factor, NSF) bind Pep12p. Consistent with a functional role for this complex in vacuolar protein sorting, double pep12tsfvac1tsf and pep12tsf vps45tsf mutants exhibited synthetic Vps- phenotypes, the tsf phenotype of the vac1tsf mutant was rescued by overexpression of VPS45 or PEP12, overexpression of a dominant pep12 allele in a sec18-1 strain resulted in a severe synthetic growth defect that was rescued by deletion of PEP12 or VAC1, and subcellular fractionation of vac1 delta cells revealed a striking change in the fractionation of Pep12p and Vps21p, a rab family GTPase required for vacuolar protein sorting. The functions of Pep12p, Vps45p, and Vps21p indicate that key aspects of Golgi-to-endosome trafficking are similar to other vesicle-mediated transport steps, although the role of Vac1p suggests that there are also novel components of the VPS pathway.
- Singer-Kruger B, Ferro-Novick S
- Use of a synthetic lethal screen to identify yeast mutants impaired in endocytosis, vacuolar protein sorting and the organization of the cytoskeleton.
- Eur J Cell Biol. 1997; 74: 365-75
- Display abstract
To identify new genes whose products act on the endocytic and vacuolar protein sorting pathways, we screened for mutants that display synthetic growth defects with delta ypt51, a mutant impaired in membrane traffic at a point where these pathways intersect. Seven mutants that fell into six different complementation groups were found to fit this criterium. Two of the mutants (ysl1 and ysl2) are new, two others are defective in the VAN1 gene. Mutants in VAN1 were previously identified by their resistance to the drug orthovanadate. The others represent known endocytosis (rvs167 and sac6) and vacuolar protein sorting (vps41) mutants. As suggested by their genetic interactions with delta ypt51, the newly identified mutants are impaired in endocytosis, vacuolar protein sorting and vacuole biogenesis. In addition, van1 and ysl2 display actin cytoskeletal defects.
- Stack JH, Horazdovsky B, Emr SD
- Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins.
- Annu Rev Cell Dev Biol. 1995; 11: 1-33
- Display abstract
In this review we summarize the structural and functional characteristics of the VPS (vacuolar protein sorting) gene products that have provided insight into the regulatory interactions and molecular mechanisms underlying protein sorting pathways in eukaryotic cells. Genetic selections in yeast have resulted in the identification of more than 40 genes required for the vesicle-mediated sorting of proteins to the lysosome-like vacuole. Molecular characterization of these VPS gene products has revealed a number of biochemical activities involved in this process. Analogous to the mannose-6-phosphate receptors in mammalian cells, the VPS10 gene encodes a transmembrane sorting receptor for the yeast vacuolar hydrolase carboxypeptidase Y. The VPS15 and VPS34 genes encode components of a novel signal transduction complex essential for the delivery of soluble vacuolar hydrolases. VPS15 and VPS34 encode a serine/ threonine protein kinase and a phosphatidylinositol 3-kinase, respectively, that interact at the cytoplasmic face of an intracellular membrane compartment, most likely corresponding to the late Golgi. Other VPS gene products have homologues that are involved in membrane trafficking pathways: The VPSI and VPS21 genes encode GTPases of the dynamin and rab families, respectively, and the products of the VPS33, VPS45, and PEP12/VPS6 genes are homologues of proteins involved in regulated synaptic vesicle exocytosis. The VPS gene products constitute components of a molecular apparatus responsible for the recognition, packaging, and vesicular transport of proteins to the vacuole in yeast.
- Scott SV, Klionsky DJ
- In vitro reconstitution of cytoplasm to vacuole protein targeting in yeast.
- J Cell Biol. 1995; 131: 1727-35
- Display abstract
Although the majority of known vacuolar proteins transit through the secretory pathway, two vacuole-resident proteins have been identified that reach this organelle by an alternate pathway. These polypeptides are targeted to the vacuole directly from the cytoplasm by a novel import mechanism. The best characterized protein that uses this pathway is aminopeptidase I (API). API is synthesized as a cytoplasmic precursor containing an amino-terminal propeptide that is cleaved off when the protein reaches the vacuole. To dissect the biochemistry of this pathway, we have reconstituted the targeting of API in vitro in a permeabilized cell system. Based on several criteria, the in vitro import assay faithfully reconstitutes the in vivo reaction. After incubation under import conditions, API is processed by a vacuolar-resident protease, copurifies with a vacuole-enriched fraction, and becomes inaccessible to the cytoplasm. These observations demonstrate that API has passed from the cytoplasm to the vacuole. The reconstituted import process is dependent on time, temperature, and energy. ATP gamma S inhibits this reaction, indicating that API transport is ATP driven. API import is also inhibited by GTP gamma S, suggesting that this process may be mediated by a GTP-binding protein. In addition, in vitro import requires a functional vacuolar ATPase; import is inhibited both in the presence of the specific V-ATPase inhibitor bafilomycin A1, and in a yeast strain in which one of the genes encoding a V-ATPase subunit has been disrupted.
- Singer-Kruger B et al.
- Role of three rab5-like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast.
- J Cell Biol. 1994; 125: 283-98
- Display abstract
The small GTPase rab5 has been shown to represent a key regulator in the endocytic pathway of mammalian cells. Using a PCR approach to identify rab5 homologs in Saccharomyces cerevisiae, two genes encoding proteins with 54 and 52% identity to rab5, YPT51 and YPT53 have been identified. Sequencing of the yeast chromosome XI has revealed a third rab5-like gene, YPT52, whose protein product exhibits a similar identity to rab5 and the other two YPT gene products. In addition to the high degree of identity/homology shared between rab5 and Ypt51p, Ypt52p, and Ypt53p, evidence for functional homology between the mammalian and yeast proteins is provided by phenotypic characterization of single, double, and triple deletion mutants. Endocytic delivery to the vacuole of two markers, lucifer yellow CH (LY) and alpha-factor, was inhibited in delta ypt51 mutants and aggravated in the double ypt51ypt52 and triple ypt51ypt52ypt53 mutants, suggesting a requirement for these small GTPases in endocytic membrane traffic. In addition to these defects, the here described ypt mutants displayed a number of other phenotypes reminiscent of some vacuolar protein sorting (vps) mutants, including a differential delay in growth and vacuolar protein maturation, partial missorting of a soluble vacuolar hydrolase, and alterations in vacuole acidification and morphology. In fact, vps21 represents a mutant allele of YPT51 (Emr, S., personal communication). Altogether, these data suggest that Ypt51p, Ypt52p, and Ypt53p are required for transport in the endocytic pathway and for correct sorting of vacuolar hydrolases suggesting a possible intersection of the endocytic with the vacuolar sorting pathway.
- Ekena K, Vater CA, Raymond CK, Stevens TH
- The VPS1 protein is a dynamin-like GTPase required for sorting proteins to the yeast vacuole.
- Ciba Found Symp. 1993; 176: 198-211
- Display abstract
VPS1 encodes a 79 kDa protein required for the proper sorting of soluble vacuolar proteins in Saccharomyces cerevisiae. The N-terminal half of Vps1p, which contains a consensus GTP-binding motif, shares extensive homology with a growing family of high molecular mass GTP-binding proteins. Members of this family have been implicated in a number of cellular processes. Vps1p most closely resembles the microtubule-associated protein dynamin. As predicted from the sequence, Vps1p binds and hydrolyses GTP. However, no requirement for microtubules was found for Vps1p function in protein sorting. In subcellular fractionation experiments Vps1p associates with the membrane fraction; the C-terminal half of Vps1p is important for this association. Mutational analysis of VPS1 generated two classes of mutations, dominant negative and recessive. The dominant mutations all mapped to the N-terminal half of the protein. Recessive mutations gave rise to either truncated or unstable proteins. A potential Vps1p-interacting protein (Mvp1p) has been isolated by screening for suppressors of the dominant alleles of VPS1. Taken together these results suggest that Vps1p is a two-domain protein that is part of a multi-subunit protein complex involved in vacuolar protein sorting.